public interface NeuralNetwork extends Serializable, Cloneable
Modifier and Type | Method and Description |
---|---|
NeuralNetwork |
clone() |
double |
fanIn() |
org.apache.commons.math3.distribution.RealDistribution |
getDist() |
NeuralNetworkGradient |
getGradient(Object[] params) |
org.jblas.DoubleMatrix |
gethBias() |
org.jblas.DoubleMatrix |
getInput() |
double |
getL2() |
double |
getMomentum() |
int |
getnHidden() |
int |
getnVisible() |
double |
getReConstructionCrossEntropy() |
int |
getRenderEpochs() |
org.apache.commons.math3.random.RandomGenerator |
getRng() |
double |
getSparsity() |
org.jblas.DoubleMatrix |
getvBias() |
org.jblas.DoubleMatrix |
getW() |
double |
l2RegularizedCoefficient() |
void |
merge(NeuralNetwork network,
int batchSize)
Performs a network merge in the form of
a += b - a / n
where a is a matrix here
b is a matrix on the incoming network
and n is the batch size
|
void |
setDist(org.apache.commons.math3.distribution.RealDistribution dist) |
void |
setFanIn(double fanIn) |
void |
sethBias(org.jblas.DoubleMatrix hBias) |
void |
setInput(org.jblas.DoubleMatrix input) |
void |
setL2(double l2) |
void |
setMomentum(double momentum) |
void |
setnHidden(int nHidden) |
void |
setnVisible(int nVisible) |
void |
setRenderEpochs(int renderEpochs) |
void |
setRng(org.apache.commons.math3.random.RandomGenerator rng) |
void |
setSparsity(double sparsity) |
void |
setvBias(org.jblas.DoubleMatrix vBias) |
void |
setW(org.jblas.DoubleMatrix w) |
double |
squaredLoss() |
void |
train(org.jblas.DoubleMatrix input,
double lr,
Object[] params) |
void |
trainTillConvergence(org.jblas.DoubleMatrix input,
double lr,
Object[] params) |
NeuralNetwork |
transpose() |
int getnVisible()
void setnVisible(int nVisible)
int getnHidden()
void setnHidden(int nHidden)
org.jblas.DoubleMatrix getW()
void setW(org.jblas.DoubleMatrix w)
org.jblas.DoubleMatrix gethBias()
void sethBias(org.jblas.DoubleMatrix hBias)
org.jblas.DoubleMatrix getvBias()
void setvBias(org.jblas.DoubleMatrix vBias)
org.apache.commons.math3.random.RandomGenerator getRng()
void setRng(org.apache.commons.math3.random.RandomGenerator rng)
org.jblas.DoubleMatrix getInput()
void setInput(org.jblas.DoubleMatrix input)
double squaredLoss()
double getSparsity()
void setSparsity(double sparsity)
void setDist(org.apache.commons.math3.distribution.RealDistribution dist)
org.apache.commons.math3.distribution.RealDistribution getDist()
NeuralNetworkGradient getGradient(Object[] params)
double getL2()
void setL2(double l2)
double getMomentum()
void setMomentum(double momentum)
void setRenderEpochs(int renderEpochs)
int getRenderEpochs()
NeuralNetwork transpose()
NeuralNetwork clone()
double fanIn()
void setFanIn(double fanIn)
double l2RegularizedCoefficient()
double getReConstructionCrossEntropy()
void train(org.jblas.DoubleMatrix input, double lr, Object[] params)
void trainTillConvergence(org.jblas.DoubleMatrix input, double lr, Object[] params)
void merge(NeuralNetwork network, int batchSize)
network
- the network to merge withbatchSize
- the batch size (number of training examples)
to average byCopyright © 2014. All Rights Reserved.