public class MatrixUtil extends Object
Constructor and Description |
---|
MatrixUtil() |
Modifier and Type | Method and Description |
---|---|
static org.jblas.DoubleMatrix |
add(org.jblas.DoubleMatrix a,
org.jblas.DoubleMatrix b) |
static void |
assertIntMatrix(org.jblas.DoubleMatrix matrix) |
static org.jblas.DoubleMatrix |
avg(org.jblas.DoubleMatrix... matrices) |
static org.jblas.DoubleMatrix |
binomial(org.jblas.DoubleMatrix p,
int n,
org.apache.commons.math3.random.RandomGenerator rng)
Generate a binomial distribution based on the given rng,
a matrix of p values, and a max number.
|
static void |
columnNormalizeBySum(org.jblas.DoubleMatrix x) |
static org.jblas.DoubleMatrix |
columnStd(org.jblas.DoubleMatrix m)
Calculates the column wise standard deviations
of the matrix
|
static org.jblas.DoubleMatrix |
columnStdDeviation(org.jblas.DoubleMatrix m) |
static org.jblas.DoubleMatrix |
columnWiseMean(org.jblas.DoubleMatrix x,
int axis) |
static void |
complainAboutMissMatchedMatrices(org.jblas.DoubleMatrix d1,
org.jblas.DoubleMatrix d2) |
static double |
cosine(org.jblas.DoubleMatrix matrix) |
static double |
cosineSim(org.jblas.DoubleMatrix d1,
org.jblas.DoubleMatrix d2) |
static void |
discretizeColumns(org.jblas.DoubleMatrix toDiscretize,
int numBins) |
static org.jblas.DoubleMatrix |
divColumnsByStDeviation(org.jblas.DoubleMatrix m)
Divides the given matrix's columns
by each column's respective standard deviations
|
static org.jblas.DoubleMatrix |
dot(org.jblas.DoubleMatrix a,
org.jblas.DoubleMatrix b) |
static void |
ensureValidOutcomeMatrix(org.jblas.DoubleMatrix out) |
static boolean |
isInfinite(org.jblas.DoubleMatrix test) |
static boolean |
isNaN(org.jblas.DoubleMatrix test) |
static boolean |
isValidOutcome(org.jblas.DoubleMatrix out) |
static org.jblas.DoubleMatrix |
log(org.jblas.DoubleMatrix vals) |
static double |
magnitude(org.jblas.DoubleMatrix vec) |
static int |
maxIndex(org.jblas.DoubleMatrix matrix) |
static org.jblas.DoubleMatrix |
mean(org.jblas.DoubleMatrix input,
int axis) |
static double |
meanSquaredError(org.jblas.DoubleMatrix input,
org.jblas.DoubleMatrix other)
Returns the mean squared error of the 2 matrices.
|
static org.jblas.DoubleMatrix |
normalize(org.jblas.DoubleMatrix input) |
static org.jblas.DoubleMatrix |
normalizeByColumnMeans(org.jblas.DoubleMatrix m)
Subtracts by column mean.
|
static org.jblas.DoubleMatrix |
normalizeByColumnSums(org.jblas.DoubleMatrix m) |
static org.jblas.DoubleMatrix |
normalizeByRowSums(org.jblas.DoubleMatrix m) |
static void |
normalizeMatrix(org.jblas.DoubleMatrix toNormalize) |
static org.jblas.DoubleMatrix |
oneDiv(org.jblas.DoubleMatrix ep) |
static org.jblas.DoubleMatrix |
oneMinus(org.jblas.DoubleMatrix ep) |
static org.jblas.DoubleMatrix |
out(org.jblas.DoubleMatrix a,
org.jblas.DoubleMatrix b) |
static org.jblas.DoubleMatrix |
outcomes(org.jblas.DoubleMatrix d) |
static org.jblas.DoubleMatrix |
roundToTheNearest(org.jblas.DoubleMatrix d,
double num) |
static org.jblas.DoubleMatrix |
sigmoid(org.jblas.DoubleMatrix x) |
static org.jblas.DoubleMatrix |
softmax(org.jblas.DoubleMatrix input) |
static org.jblas.DoubleMatrix |
sum(org.jblas.DoubleMatrix input,
int axis) |
static double |
sumSquaredError(org.jblas.DoubleMatrix input,
org.jblas.DoubleMatrix other)
Returns the sum squared error of the 2 matrices.
|
static org.jblas.DoubleMatrix |
toMatrix(int[] arr) |
static org.jblas.DoubleMatrix |
toMatrix(int[][] arr) |
static org.jblas.DoubleMatrix |
toOutcomeVector(int index,
int numOutcomes) |
static org.jblas.DoubleMatrix |
uniform(org.apache.commons.math3.random.RandomGenerator rng,
int rows,
int columns) |
static org.jblas.DoubleMatrix |
unitVec(org.jblas.DoubleMatrix toScale) |
static org.jblas.DoubleMatrix |
unroll(org.jblas.DoubleMatrix d) |
static DataSet |
xorData(int n) |
static DataSet |
xorData(int n,
int columns) |
public static void complainAboutMissMatchedMatrices(org.jblas.DoubleMatrix d1, org.jblas.DoubleMatrix d2)
public static DataSet xorData(int n)
public static DataSet xorData(int n, int columns)
public static double magnitude(org.jblas.DoubleMatrix vec)
public static org.jblas.DoubleMatrix unroll(org.jblas.DoubleMatrix d)
public static org.jblas.DoubleMatrix outcomes(org.jblas.DoubleMatrix d)
public static double cosineSim(org.jblas.DoubleMatrix d1, org.jblas.DoubleMatrix d2)
public static org.jblas.DoubleMatrix normalize(org.jblas.DoubleMatrix input)
public static double cosine(org.jblas.DoubleMatrix matrix)
public static org.jblas.DoubleMatrix unitVec(org.jblas.DoubleMatrix toScale)
public static org.jblas.DoubleMatrix uniform(org.apache.commons.math3.random.RandomGenerator rng, int rows, int columns)
public static boolean isValidOutcome(org.jblas.DoubleMatrix out)
public static void ensureValidOutcomeMatrix(org.jblas.DoubleMatrix out)
public static void assertIntMatrix(org.jblas.DoubleMatrix matrix)
public static boolean isInfinite(org.jblas.DoubleMatrix test)
public static boolean isNaN(org.jblas.DoubleMatrix test)
public static void discretizeColumns(org.jblas.DoubleMatrix toDiscretize, int numBins)
public static org.jblas.DoubleMatrix roundToTheNearest(org.jblas.DoubleMatrix d, double num)
public static void columnNormalizeBySum(org.jblas.DoubleMatrix x)
public static org.jblas.DoubleMatrix toOutcomeVector(int index, int numOutcomes)
public static org.jblas.DoubleMatrix toMatrix(int[][] arr)
public static org.jblas.DoubleMatrix toMatrix(int[] arr)
public static org.jblas.DoubleMatrix add(org.jblas.DoubleMatrix a, org.jblas.DoubleMatrix b)
public static org.jblas.DoubleMatrix softmax(org.jblas.DoubleMatrix input)
public static org.jblas.DoubleMatrix mean(org.jblas.DoubleMatrix input, int axis)
public static org.jblas.DoubleMatrix sum(org.jblas.DoubleMatrix input, int axis)
public static org.jblas.DoubleMatrix binomial(org.jblas.DoubleMatrix p, int n, org.apache.commons.math3.random.RandomGenerator rng)
p
- the p matrix to usen
- the n to userng
- the rng to usepublic static org.jblas.DoubleMatrix columnWiseMean(org.jblas.DoubleMatrix x, int axis)
public static org.jblas.DoubleMatrix avg(org.jblas.DoubleMatrix... matrices)
public static int maxIndex(org.jblas.DoubleMatrix matrix)
public static org.jblas.DoubleMatrix sigmoid(org.jblas.DoubleMatrix x)
public static org.jblas.DoubleMatrix dot(org.jblas.DoubleMatrix a, org.jblas.DoubleMatrix b)
public static org.jblas.DoubleMatrix out(org.jblas.DoubleMatrix a, org.jblas.DoubleMatrix b)
public static org.jblas.DoubleMatrix oneMinus(org.jblas.DoubleMatrix ep)
public static org.jblas.DoubleMatrix oneDiv(org.jblas.DoubleMatrix ep)
public static org.jblas.DoubleMatrix columnStd(org.jblas.DoubleMatrix m)
m
- the matrix to usepublic static double meanSquaredError(org.jblas.DoubleMatrix input, org.jblas.DoubleMatrix other)
IllegalArgumentException
is throwninput
- the first oneother
- the second onepublic static org.jblas.DoubleMatrix log(org.jblas.DoubleMatrix vals)
public static double sumSquaredError(org.jblas.DoubleMatrix input, org.jblas.DoubleMatrix other)
IllegalArgumentException
is throwninput
- the first oneother
- the second onepublic static void normalizeMatrix(org.jblas.DoubleMatrix toNormalize)
public static org.jblas.DoubleMatrix normalizeByColumnSums(org.jblas.DoubleMatrix m)
public static org.jblas.DoubleMatrix columnStdDeviation(org.jblas.DoubleMatrix m)
public static org.jblas.DoubleMatrix divColumnsByStDeviation(org.jblas.DoubleMatrix m)
m
- the matrix to dividepublic static org.jblas.DoubleMatrix normalizeByColumnMeans(org.jblas.DoubleMatrix m)
m
- the matrix to normalizepublic static org.jblas.DoubleMatrix normalizeByRowSums(org.jblas.DoubleMatrix m)
Copyright © 2014. All Rights Reserved.