Skip navigation links
A B C D E F G H I J K L M N O P R S T U V W X Y Z 

A

able(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
abs(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
accept(T) - Method in interface org.deeplearning4j.berkeley.Filter
 
accuracy() - Method in class org.deeplearning4j.eval.Evaluation
Accuracy: TP + TN / (P + N)
activate() - Method in interface org.deeplearning4j.nn.api.Layer
Trigger an activation with the last specified input
activate(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Initialize the layer with the given input and return the activation for this layer given this input
activate() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Triggers the activation of the last hidden layer ie: not logistic regression
activate(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Triggers the activation for a given layer
activate(int, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Triggers the activation of the given layer
activate() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.ConvolutionDownSampleLayer
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.SubsamplingLayer
 
activationFromPrevLayer(int, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
activationFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
activationFunction(ActivationFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
activationMean() - Method in interface org.deeplearning4j.nn.api.Layer
 
activationMean() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
adagradResetIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
add(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
add(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by one.
add(T, T, int) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by count.
add(ConfusionMatrix<T>) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Adds the entries from another confusion matrix to this one.
add(NeuralNetworkGradient) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
Adds the given gradient and this one together
add(OutputLayerGradient) - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
Sums this gradient with the given one
add(E) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
add(Object, int) - Method in class org.deeplearning4j.util.Index
 
add(Object) - Method in class org.deeplearning4j.util.Index
 
add(Pair<K, V>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Adds the specified element to this applyTransformToDestination if it is not already present (optional operation).
add(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
 
addAll(Collection<? extends E>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
addAll(Collection<? extends Pair<K, V>>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Adds all of the elements in the specified collection to this applyTransformToDestination if they're not already present (optional operation).
addColumn(List<String>) - Method in class org.deeplearning4j.util.StringGrid
 
addExp(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
addExp_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Similar to logAdd, but without the final log.
addGradient(MultiLayerGradient) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
addRow(List<String>) - Method in class org.deeplearning4j.util.StringGrid
 
addToConfusion(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Adds to the confusion matrix
adjustedrSquared(double, int, int) - Static method in class org.deeplearning4j.util.MathUtils
This calculates the adjusted r^2 including degrees of freedom.
allMatches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
appendTo(String, File) - Static method in class org.deeplearning4j.util.FileOperations
 
appendToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
applyDropConnectIfNecessary(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Applies drop connect relative to connections.
applyDropOutIfNecessary(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
applyDropOutIfNecessary(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
applySparsity(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Applies sparsity to the passed in hbias gradient
applySparsity - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
applySparsity(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
applyTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
approxEquals(Counter<E>, double) - Method in class org.deeplearning4j.berkeley.Counter
 
approxExp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxLog(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxPow(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
ArchiveUtils - Class in org.deeplearning4j.util
 
ArchiveUtils() - Constructor for class org.deeplearning4j.util.ArchiveUtils
 
argMax() - Method in class org.deeplearning4j.berkeley.Counter
Finds the key with maximum count.
argMax() - Method in class org.deeplearning4j.berkeley.CounterMap
Finds the key with maximum count.
argsToMap(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToMap(String[], Map<String, Integer>) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToProperties(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
argsToProperties(String[], Map) - Static method in class org.deeplearning4j.berkeley.StringUtils
asciify(String) - Method in class org.deeplearning4j.util.FingerPrintKeyer
 
asCounter() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a counter whose keys are the elements in this priority queue, and whose counts are the priorities in this queue.
asImageMiniBatches(File, int, int) - Method in class org.deeplearning4j.util.ImageLoader
Slices up an image in to a mini batch.
asMatrix(File) - Method in class org.deeplearning4j.util.ImageLoader
 
asMinPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Warning: all priorities are the negative of their counts in the counter here
asPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Builds a priority queue whose elements are the counter's elements, and whose priorities are those elements' counts in the counter.
asRowVector(File) - Method in class org.deeplearning4j.util.ImageLoader
 
asType(Class<RBM>) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
asType(Class<E>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
AutoEncoder - Class in org.deeplearning4j.models.featuredetectors.autoencoder
Normal 2 layer back propagation network
AutoEncoder(INDArray, INDArray, INDArray, INDArray, NeuralNetConfiguration) - Constructor for class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
 
AutoEncoder.Builder - Class in org.deeplearning4j.models.featuredetectors.autoencoder
 
AutoEncoderOptimizer - Class in org.deeplearning4j.optimize.optimizers.autoencoder
Auto Encoder Optimizer
AutoEncoderOptimizer(NeuralNetwork, float, Object[], NeuralNetwork.OptimizationAlgorithm, LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.optimize.optimizers.autoencoder.AutoEncoderOptimizer
 

B

b - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
b - Variable in class org.deeplearning4j.nn.layers.Layer.Builder
 
backProp(double, int, Object[]) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
Backprop with the output being the reconstruction
backProp(TrainingEvaluator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Backpropagation of errors for weights
backProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Backpropagation of errors for weights
backProp - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
backProp(double, int, Object[]) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Backprop with the output being the reconstruction
backPropGradient() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Do a back prop iteration.
backPropGradient2() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Do a back prop iteration.
backPropGradientR(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Do a back prop iteration.
BackPropOptimizer - Class in org.deeplearning4j.optimize.optimizers
Optimizes via back prop gradients
BackPropOptimizer(BaseMultiLayerNetwork, double, int) - Constructor for class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
BackPropROptimizer - Class in org.deeplearning4j.optimize.optimizers
Optimizes via back prop gradients with the r operator, used in hessian free operators
BackPropROptimizer(BaseMultiLayerNetwork, double, int) - Constructor for class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
backPropStep() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
One step of back prop
BackPropStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Step with back prop
BackPropStepFunction(BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.optimize.stepfunctions.BackPropStepFunction
 
backPropStepR(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
One step of back prop with the R operator
BaseConvolutionalMultiLayerNetwork - Class in org.deeplearning4j.nn
Created by agibsonccc on 9/8/14.
BaseConvolutionalMultiLayerNetwork() - Constructor for class org.deeplearning4j.nn.BaseConvolutionalMultiLayerNetwork
 
BaseDataFetcher - Class in org.deeplearning4j.datasets.fetchers
A base class for assisting with creation of matrices with the data applyTransformToDestination fetcher
BaseDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
BaseDatasetIterator - Class in org.deeplearning4j.datasets.iterator
Baseline implementation includes control over the data fetcher and some basic getters for metadata
BaseDatasetIterator(int, int, DataSetFetcher) - Constructor for class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
BaseLayer - Class in org.deeplearning4j.nn.layers
A layer with a bias and activation function
BaseLayer(NeuralNetConfiguration, INDArray, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
 
BaseMultiLayerNetwork - Class in org.deeplearning4j.nn
A base class for a multi layer neural network with a logistic output layer and multiple hidden neuralNets.
BaseMultiLayerNetwork() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int[], int) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int[], int, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork.Builder<E extends BaseMultiLayerNetwork> - Class in org.deeplearning4j.nn
 
BaseMultiLayerNetwork.ParamRange - Class in org.deeplearning4j.nn
 
BaseNeuralNetwork - Class in org.deeplearning4j.nn
Baseline class for any Neural Network used as a layer in a deep network such as an DBN
BaseNeuralNetwork() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork(INDArray, INDArray, INDArray, INDArray, NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork.Builder<E extends BaseNeuralNetwork> - Class in org.deeplearning4j.nn
 
batch - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Batch size
batch() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Batch size
batch() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Batch size
batch() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
bernoullis(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the bernoulli trial for the given event.
bestLoss() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
The best validation loss so far
bestLoss() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
The best validation loss so far
bestLoss(double) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
binarize(int) - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Binarize the data based on the threshold (anything < threshold is zero) This is used for making the image brightness agnostic.
binarize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Binarize the data based on the threshold (anything < threshold is zero) This is used for making the image brightness agnostic.
binomial(RandomGenerator, int, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a binomial distributed number using the given rng
build() - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
build() - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
build() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder.Builder
 
build() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
build() - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
build() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
build() - Method in class org.deeplearning4j.nn.layers.Layer.Builder
 
build() - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
build() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
build() - Method in class org.deeplearning4j.plot.Tsne.Builder
 
buildCounter(MapFactory<V, Double>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
buildEmpty() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
buildEmpty() - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
Builder() - Constructor for class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.layers.Layer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
Builder() - Constructor for class org.deeplearning4j.plot.Tsne.Builder
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
ByteUtil - Class in org.deeplearning4j.util
 
ByteUtil() - Constructor for class org.deeplearning4j.util.ByteUtil
 

C

calculate(INDArray, int, double) - Method in class org.deeplearning4j.plot.Tsne
 
call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
 
capitalize(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Uppercases the first character of a string.
cgBackTrack(List<INDArray>, INDArray) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
Iterate through the current applyTransformToDestination of gradients and backtrack upon an optimal step that improves the current score
chiSquare2by2(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a 2x2 chi-square value.
choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
This will return the cholesky decomposition of the given matrix
clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
Clamps the value to a discrete value
classCount(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times the given label has actually occurred
Classifier - Interface in org.deeplearning4j.nn.api
A classifier (this is for supervised learning)
classifier() - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
classify(INDArray) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
clazz - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
clazz - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
clear() - Method in class org.deeplearning4j.berkeley.Counter
 
clear() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
clear() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Removes all of the mappings from this map (optional operation).
clear() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes all of the elements from this applyTransformToDestination (optional operation).
clearInput() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
Clears the input from the neural net
clearInput() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Clears the input from all of the neuralNets
clearInput() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Clears the input from the neural net
clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a clone of this priority queue.
clone() - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
clone() - Method in interface org.deeplearning4j.nn.api.Layer
 
clone() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
clone() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
clone() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Creates and returns a copy of this object.
clone() - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
clone() - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
close() - Method in class org.deeplearning4j.plot.FilterRenderer
 
clusterColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the combination of n choose r
combineColumns(int, Integer[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
combineColumns(int, int[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
 
compare(Map<String, Integer>, Map<String, Integer>) - Method in class org.deeplearning4j.util.StringCluster.SizeComparator
 
compareTo(Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair
Compares this object with the specified object for order.
computeDeltas() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
computeDeltas2() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
computeDeltas2() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
computeDeltasR(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
computeDeltasR(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
computeDxs() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
computeHistogramBucketIndex(double, double, double, int) - Method in class org.deeplearning4j.plot.FilterRenderer
 
computeHistogramBucketIndexAlt(double, double, double, int) - Method in class org.deeplearning4j.plot.FilterRenderer
This is faster but produces rounding errors
concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concatBiases(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
concatBiases - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
concurrentSkipListSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
conf() - Method in interface org.deeplearning4j.nn.api.Layer
 
conf() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
conf - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
conf - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
conf() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
conf - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
conf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
conf - Variable in class org.deeplearning4j.nn.layers.Layer.Builder
 
conf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.Layer.Builder
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
This data structure provides an easy way to build and output a confusion matrix.
ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates an empty confusion Matrix
ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
conjGradient(INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
constrainGradientToUnitNorm(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
constrainGradientToUnitNorm - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
contains(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
contains(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
contains(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains the specified element.
contains(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains all of the elements of the specified collection.
containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
Returns whether the counter contains the given key.
containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
containsKey(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map contains a mapping for the specified key.
containsValue(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map maps one or more keys to the specified value.
contrastiveDivergence(double, int, INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Contrastive divergence revolves around the idea of approximating the log likelihood around x1(input) with repeated sampling.
contrastiveDivergence(double, int, INDArray, int) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Contrastive divergence revolves around the idea of approximating the log likelihood around x1(input) with repeated sampling.
convertListPairs(List<DataSet>) - Method in class org.deeplearning4j.base.LFWLoader
 
ConvolutionDownSampleLayer - Class in org.deeplearning4j.nn.layers
Convolution layer
ConvolutionDownSampleLayer(NeuralNetConfiguration, INDArray, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.layers.ConvolutionDownSampleLayer
 
ConvolutionDownSampleLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.ConvolutionDownSampleLayer
 
coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the correlation coefficient of two double vectors.
corruptionLevel - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
Counter<E> - Class in org.deeplearning4j.berkeley
A map from objects to doubles.
Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
CounterMap<K,V> - Class in org.deeplearning4j.berkeley
Maintains counts of (key, value) pairs.
CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
 
createBias() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
createBias() - Method in class org.deeplearning4j.nn.layers.ConvolutionDownSampleLayer
 
createBias() - Method in class org.deeplearning4j.nn.layers.SubsamplingLayer
 
createHiddenLayer(int, INDArray) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
s a hidden layer with the given parameters.
createHiddenLayer(int, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Creates a hidden layer with the given parameters.
createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates a feature vector
createLayer(INDArray, INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
 
createLayer(INDArray, INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
createLayer(INDArray, INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
 
createLayer(INDArray, INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Creates a layer depending on the index.
createLayer(INDArray, INDArray, INDArray, INDArray, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Creates a layer depending on the index.
createNetworkLayers(int) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
 
createNetworkLayers(int) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
createNetworkLayers(int) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
 
createNetworkLayers(int) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
createNetworkLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates an output label matrix
createWeightMatrix() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
createWeightMatrix() - Method in class org.deeplearning4j.nn.layers.ConvolutionDownSampleLayer
 
createWeightMatrix() - Method in class org.deeplearning4j.nn.layers.SubsamplingLayer
 
CSVDataFetcher - Class in org.deeplearning4j.datasets.fetchers
CSV record based data fetcher
CSVDataFetcher(InputStream, int) - Constructor for class org.deeplearning4j.datasets.fetchers.CSVDataFetcher
Constructs a csv data fetcher with the specified label column skipping no lines
CSVDataFetcher(File, int) - Constructor for class org.deeplearning4j.datasets.fetchers.CSVDataFetcher
Constructs a csv data fetcher with the specified label column skipping no lines
CSVDataFetcher(InputStream, int, int) - Constructor for class org.deeplearning4j.datasets.fetchers.CSVDataFetcher
Constructs a csv data fetcher with the specified number of lines to skip
CSVDataFetcher(File, int, int) - Constructor for class org.deeplearning4j.datasets.fetchers.CSVDataFetcher
Constructs a csv data fetcher with the specified number of lines to skip
CSVDataSetIterator - Class in org.deeplearning4j.datasets.iterator
CSVDataSetIterator CSV reader for a dataset file
CSVDataSetIterator(int, int, InputStream, int) - Constructor for class org.deeplearning4j.datasets.iterator.CSVDataSetIterator
 
CSVDataSetIterator(int, int, File, int) - Constructor for class org.deeplearning4j.datasets.iterator.CSVDataSetIterator
 
CSVDataSetIterator(int, int, InputStream, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CSVDataSetIterator
 
CSVDataSetIterator(int, int, File, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CSVDataSetIterator
 
curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
currIteration - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Direct access to a number represenative of iterating through a dataset
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
CURVES_FILE_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CURVES_URL - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Curves data fetcher
CurvesDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataSetIterator - Class in org.deeplearning4j.datasets.iterator
Curves data applyTransformToDestination iterator
CurvesDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CurvesDataSetIterator
 

D

d2p(INDArray, double) - Method in class org.deeplearning4j.plot.Tsne
Convert data to probability co-occurrences
dampingFactor - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
dampingUpdate(double, double, double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
DataSetFetcher - Interface in org.deeplearning4j.datasets.iterator
A low level interface for loading datasets in to memory.
DataSetIterator - Interface in org.deeplearning4j.datasets.iterator
A DataSetIterator handles traversing through a dataset and preparing data for a neural network.
DataSetPreProcessor - Interface in org.deeplearning4j.datasets.iterator
Pre process a dataset
DataSets - Class in org.deeplearning4j.datasets
 
DataSets() - Constructor for class org.deeplearning4j.datasets.DataSets
 
DBN - Class in org.deeplearning4j.models.classifiers.dbn
Deep Belief Network.
DBN() - Constructor for class org.deeplearning4j.models.classifiers.dbn.DBN
 
DBN.Builder - Class in org.deeplearning4j.models.classifiers.dbn
 
decode(INDArray) - Method in class org.deeplearning4j.util.Viterbi
Decodes the given labels, assuming its a binary label matrix
decode(INDArray, boolean) - Method in class org.deeplearning4j.util.Viterbi
Decodes a series of labels
dedupeByCluster(int) - Method in class org.deeplearning4j.util.StringGrid
Deduplicate based on the column clustering signature
dedupeByClusterAll() - Method in class org.deeplearning4j.util.StringGrid
 
DeepAutoEncoderDataSetReconstructionRender - Class in org.deeplearning4j.plot
Iterates through a dataset and draws reconstructions
DeepAutoEncoderDataSetReconstructionRender(DataSetIterator, SemanticHashing, int, int) - Constructor for class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
Initialize with the given rows and columns, this will reshape the matrix in to the specified rows and columns
DeepLearningException - Exception in org.deeplearning4j.exception
 
DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningIOUtil - Class in org.deeplearning4j.util
 
DeepLearningIOUtil() - Constructor for class org.deeplearning4j.util.DeepLearningIOUtil
 
defaultConfiguration - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
DefaultFactory(Class) - Constructor for class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
DefaultLexicographicPairComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
DefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Created by agibsonccc on 11/1/14.
DefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
DenoisingAutoEncoder - Class in org.deeplearning4j.models.featuredetectors.da
Denoising Autoencoder.
DenoisingAutoEncoder(INDArray, INDArray, INDArray, INDArray, NeuralNetConfiguration) - Constructor for class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder.Builder - Class in org.deeplearning4j.models.featuredetectors.da
 
DenoisingAutoEncoderOptimizer - Class in org.deeplearning4j.optimize.optimizers.da
Optimizes a denoising auto encoder.
DenoisingAutoEncoderOptimizer(NeuralNetwork, float, Object[], NeuralNetwork.OptimizationAlgorithm, LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.optimize.optimizers.da.DenoisingAutoEncoderOptimizer
 
determinationCoefficient(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
This returns the determination coefficient of two vectors given a length
difference(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
difference(Collection<? extends T>, Collection<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
Return is s1 \ s2
dimensionCheck() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
disableBackProp() - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
Disables back propagation
disableBackProp() - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
Disables back propagation
disableBackProp() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
Disables back propagation
disableBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Disables back propagation
discretize(double, double, double, int) - Static method in class org.deeplearning4j.util.MathUtils
Discretize the given value
DiskBasedQueue<E> - Class in org.deeplearning4j.util
Naive disk based queue for storing items on disk.
DiskBasedQueue() - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
DiskBasedQueue(String) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
DiskBasedQueue(File) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
dist(RealDistribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
dist - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
distanceFinderZValue(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will translate a vector in to an equivalent integer
distribution(INDArray) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
Distributions - Class in org.deeplearning4j.distributions
 
Distributions() - Constructor for class org.deeplearning4j.distributions.Distributions
 
div(int) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
div(int) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
Divides the gradients by the given number
div(int) - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
Divies the gradient by the given number (used in averaging)
Dl4jReflection - Class in org.deeplearning4j.util
 
doMask - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
dotProduct(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
downloadAndUntar() - Method in class org.deeplearning4j.base.MnistFetcher
 
draw() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
draw() - Method in class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
 
draw() - Method in class org.deeplearning4j.plot.FilterRenderer
 
draw() - Method in class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
draw() - Method in class org.deeplearning4j.plot.NeuralNetworkReconstructionRender
 
DrawMnist - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawMnist() - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
drawMnist(DataSet, INDArray) - Static method in class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
DrawReconstruction - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawReconstruction(INDArray, int, int) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
DrawReconstruction(INDArray) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
dropOut(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
dropOut - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
dropoutMask - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 

E

editDistance(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the Levenshtein (edit) distance of the two given Strings.
element() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
emptyIterator() - Static method in class org.deeplearning4j.berkeley.Iterators
 
ensureCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
entropy(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy (information gain, or uncertainty of a random variable).
Entry(K, T, V) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
entrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
entrySet() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Set view of the mappings contained in this map.
EnumUtil - Class in org.deeplearning4j.util
Created by agibsonccc on 9/3/14.
EnumUtil() - Constructor for class org.deeplearning4j.util.EnumUtil
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Pair
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Triple
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
equals(Object) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
equals(Object) - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
equals(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
errorFor(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
errors - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
errorTolerance - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
escapeString(String, char[], char) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
euclideanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
euclideanDistance(float[], float[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.Evaluation
Collects statistics on the real outcomes vs the guesses.
Evaluation - Class in org.deeplearning4j.eval
Evaluation metrics: precision, recall, f1
Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
 
exactBinomial(int, int, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one tailed exact binomial test probability.
exp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
exponential(RandomGenerator, double) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a exponential distribution with a mean of 0 and a standard deviation of std
extraParams - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 

F

f1() - Method in class org.deeplearning4j.eval.Evaluation
TP: true positive FP: False Positive FN: False Negative F1 score: 2 * TP / (2TP + FP + FN)
f1(int) - Method in class org.deeplearning4j.eval.Evaluation
Calculate f1 score for a given class
factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the factorial of the given number n.
Factory<T> - Interface in org.deeplearning4j.berkeley
 
Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
 
falsePositive() - Method in class org.deeplearning4j.eval.Evaluation
False positive: wrong guess
featureMapSize(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
feedForward() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Compute activations from input to output of the output layer
feedForwardR(List<INDArray>, INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Feed forward with the r operator
feedForwardR(List<INDArray>, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Feed forward with the r operator
feedForwardR(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Feed forward with the r operator
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.CSVDataFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
Fetches the next dataset.
fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
fileNameClean(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns a "clean" version of the given filename in which spaces have been converted to dashes and all non-alphaneumeric chars are underscores.
FileOperations - Class in org.deeplearning4j.util
 
fillDown(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
Filter<T> - Interface in org.deeplearning4j.berkeley
Filters are boolean functions which accept or reject items.
filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
filterBySimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
 
FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilterPanel - Class in org.deeplearning4j.plot
 
FilterPanel(BufferedImage) - Constructor for class org.deeplearning4j.plot.FilterPanel
 
FilterRenderer - Class in org.deeplearning4j.plot
Adapted from: https://github.com/jpatanooga/Metronome/blob/master/src/main/java/tv/floe/metronome/deeplearning/rbm/visualization/RBMRenderer.java
FilterRenderer() - Constructor for class org.deeplearning4j.plot.FilterRenderer
 
filterRowsByColumn(int, Collection<String>) - Method in class org.deeplearning4j.util.StringGrid
 
filterSize(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
find(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found inside this String.
finetune(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Trains the decoder on the given input
finetune() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Finetunes with the current cached labels
finetune(DataSetIterator, double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run SGD based on the given labels
finetune(DataSetIterator, double, int, TrainingEvaluator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run training algorithm based on the datastet iterator
finetune(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run SGD based on the given labels
finetune(INDArray, TrainingEvaluator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run training algorithm based on the given labels
FingerPrintKeyer - Class in org.deeplearning4j.util
Copied from google refine: takes the key and gets rid of all punctuation, transforms to lower case and alphabetic sorts the words
FingerPrintKeyer() - Constructor for class org.deeplearning4j.util.FingerPrintKeyer
 
FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
 
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
Fit the model to the given data
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
Fit the model to the given data
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
Trains via an optimization algorithm such as SGD or Conjugate Gradient
fit(INDArray, INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Fit the model
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Fit the model to the given data
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
fit(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
Fit the model to the given data
fit(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Fit the model to the given data
fit(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Note: k is the first input iken params.
fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, INDArray, Object[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(DataSet, Object[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, int[], Object[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, Object[]) - Method in interface org.deeplearning4j.nn.api.Model
Fit the model to the given data
fit(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Fit the model to the given data
fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
fit(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model to the given data
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(INDArray, INDArray, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(DataSet, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(INDArray, int[], Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Fit the model to the given data
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(INDArray, INDArray, Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(DataSet, Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(INDArray, int[], Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model
fit(INDArray, Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model to the given data
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Fit the model to the given data
flattenedImageFromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
forceIterations() - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceIterations() - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceIterations() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceIterations() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceNumEpochs - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
forceNumIterations() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
frame - Variable in class org.deeplearning4j.plot.FilterRenderer
 
freeEnergy(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Free energy for an RBM Lower energy models have higher probability of activations
fromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
fromFile(String, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromImageFile(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
fromInput(InputStream, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
This will take a given string and separator and convert it to an equivalent double array.

G

generateHistogramBuckets(INDArray, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Take some matrix input data and a bucket count and compute: - a list of N buckets, each with: 1.
generateUniform(int) - Static method in class org.deeplearning4j.util.MathUtils
This will generate a series of uniformally distributed numbers between l times
get(int) - Method in class org.deeplearning4j.util.Index
 
get(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.
get(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
getActivationFunction() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getActivationType() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getActualTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class actually appeared in the data.
getAdaGrad() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getAdaGrad() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getAdaGrad() - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
getAllImagesAsMatrix() - Method in class org.deeplearning4j.base.LFWLoader
 
getAllImagesAsMatrix(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getAllWithSimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
 
getB() - Method in interface org.deeplearning4j.nn.api.Layer
 
getB() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getBackPropGradient2() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Gets the back prop gradient with the r operator (gauss vector) and the associated precon matrix This is also called computeGV
getBackPropRGradient(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Gets the back prop gradient with the r operator (gauss vector) This is also called computeGV
getbGradient() - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
getBiasAdaGrad() - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
getBiasEnd() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
getBiasStart() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
getCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
getClasses() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the applyTransformToDestination of all classes in the confusion matrix.
getClusters() - Method in class org.deeplearning4j.util.StringCluster
 
getCols() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of columns per image.
getColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
getCorruptedInput(INDArray, float) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
Corrupts the given input by doing a binomial sampling given the corruption level
getCorruptionLevel() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getCount(E) - Method in class org.deeplearning4j.berkeley.Counter
Get the count of the element, or zero if the element is not in the counter.
getCount(K, V) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the count of the given (key, value) entry, or zero if that entry is not present.
getCount(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the total count of the given key, or zero if that key is not present.
getCount() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getCount(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the count of the number of times the "predicted" class was predicted for the "actual" class.
getCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the sub-counter for the given key.
getCounters() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getCurrentIndex() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
The current entry index.
getDataFor(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getDefaultConfiguration() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getDeflt() - Method in class org.deeplearning4j.berkeley.Counter
 
getDgg() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getDist() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getDropOut() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getEmptyConstructor(Class<?>) - Static method in class org.deeplearning4j.util.Dl4jReflection
Gets the empty constructor from a class
getEncoder() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Number of bytes for each entry.
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getFeatureMapSize() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getFeatureMatrix(int) - Method in class org.deeplearning4j.base.LFWLoader
Get the first num found images
getFilterSize() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getFinetuneEpochs() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getFinetuneLearningRate() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getFirst() - Method in class org.deeplearning4j.berkeley.Pair
 
getFirst() - Method in class org.deeplearning4j.berkeley.Triple
 
getFirstKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getFp() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getFret() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getG() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getGam() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getGg() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getGradient(Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
 
getGradient(Object[]) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
getGradient(Object[]) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
getGradient(Object[]) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getGradient(double) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Gets the gradient from one training iteration
getGradients() - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
getH() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
gethBias() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
gethBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
gethBiasAdaGrad() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
gethBiasAdaGrad() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
gethBiasGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getHiddenBiasTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getHiddenLayerSizes() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getHiddenUnit() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getHiddenValues(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
 
getHiddenValues(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
getIfNotExists() - Method in class org.deeplearning4j.base.LFWLoader
 
getImage() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
getImage() - Method in class org.deeplearning4j.plot.FilterRenderer
 
getImages(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
getImages() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying images file as MnistImageFile.
getImagesAsList() - Method in class org.deeplearning4j.base.LFWLoader
 
getInitialStepSize() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
getInitialStepSize() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getInput() - Method in interface org.deeplearning4j.nn.api.Layer
 
getInput() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getInput() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getInput() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getInput() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getInputLayer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getIterationListener() - Method in class org.deeplearning4j.plot.Tsne
 
getK() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
Returns the key corresponding to this entry.
getL2() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getLabels() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying labels file as MnistLabelFile.
getLabels() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLabels() - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
getLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLayerWiseConfigurations() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLineMaximizer() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
getLogMetaInstability() - Method in class org.deeplearning4j.util.Viterbi
 
getLogOfDiangnalTProb() - Method in class org.deeplearning4j.util.Viterbi
 
getLogPCorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getLogPIncorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getLogRegGradient() - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
getLogStates() - Method in class org.deeplearning4j.util.Viterbi
 
getLossFunction() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getLr() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
MNIST DB files start with unique integer number.
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
 
getMask() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getMax() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMaxIterations() - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
getMaxIterations() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getMean() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMetaStability() - Method in class org.deeplearning4j.util.Viterbi
 
getMin() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMomentum() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getMomentumAfter() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getNeuralNets() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnIn() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getnLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnOut() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getNumColumns() - Method in class org.deeplearning4j.util.StringGrid
 
getNumDataSets() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
getNumFeatureMaps() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getNumInFeatureMaps() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getNumIterations() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getNumNames() - Method in class org.deeplearning4j.base.LFWLoader
 
getNumParameters() - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
getNumParameters() - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getNumPixelColumns() - Method in class org.deeplearning4j.base.LFWLoader
 
getOptimizable() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
getOptimizationAlgo() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getOutputLayer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getPairIterator() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getParameter(int) - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
getParameter(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getParameters() - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.da.DenoisingAutoEncoderOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getParameters() - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getpCorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getPicDraw() - Method in class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
 
getPossibleLabels() - Method in class org.deeplearning4j.util.Viterbi
 
getPredictedTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class was predicted by the classifier.
getPretrainEpochs() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getPriority() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
getPriority() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Gets the priority of the highest-priority element of the queue.
getProbability(E) - Method in class org.deeplearning4j.berkeley.Counter
I know, I know, this should be wrapped in a Distribution class, but it's such a common use...why not.
getReconDraw() - Method in class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
 
getReconstructedInput(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
 
getReconstructedInput(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
getRenderWeightIterations() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getResetAdaGradIterations() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getRng() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getRow(int) - Method in class org.deeplearning4j.util.StringGrid
 
getRows() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of rows per image.
getRowsWithColumnValues(Collection<String>, int) - Method in class org.deeplearning4j.util.StringGrid
 
getRowsWithDuplicateValuesInColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
getRowWithOnlyOneOccurrence(int) - Method in class org.deeplearning4j.util.StringGrid
 
getSecond() - Method in class org.deeplearning4j.berkeley.Pair
 
getSecond() - Method in class org.deeplearning4j.berkeley.Triple
 
getSecondKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getSeed() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getSortedKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
getSparsity() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getStates() - Method in class org.deeplearning4j.util.Viterbi
 
getStep() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getStepSize() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getStpmax() - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
 
getStpmax() - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
 
getStpmax() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
getStride() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getSum() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getThird() - Method in class org.deeplearning4j.berkeley.Triple
 
getUniqueRows() - Method in class org.deeplearning4j.util.StringGrid
 
getValue() - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
getValue() - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getValue() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getValueGradient(int) - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
getValueGradient(int) - Method in class org.deeplearning4j.optimize.optimizers.rbm.RBMOptimizer
 
getvBias() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getvBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getVBiasAdaGrad() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getVBiasAdaGrad() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getvBiasGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
getVisibleBiasTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getVisibleUnit() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getW() - Method in interface org.deeplearning4j.nn.api.Layer
 
getW() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
getW() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getW() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getWeightInit() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getWeightShape() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getWeightTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getwEnd() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
getwGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
getwGradient() - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
getwStart() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
getXi() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
getY() - Method in class org.deeplearning4j.plot.Tsne
 
gibbhVh(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Gibbs sampling step: hidden ---> visible ---> hidden
gr(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is greater than b.
grow(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.MnistFetcher
 

H

hashCode() - Method in class org.deeplearning4j.berkeley.Pair
 
hashCode() - Method in class org.deeplearning4j.berkeley.Triple
 
hashCode() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
hashCode() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
hashCode() - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
hashCode() - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
HashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
hashSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
hasMore() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Whether the dataset has more to load
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
hasNext() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns true if the priority queue is non-empty
hasNext() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Returns true if the iteration has more elements.
hasNext() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Returns true if the iteration has more elements.
hasNext() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
hBeta(INDArray, double) - Method in class org.deeplearning4j.plot.Tsne
Computes a gaussian kernel given a vector of squared euclidean distances
hBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
hBiasAdaGrad - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
hBiasGradient - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
hBiasMean() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
hBiasMean() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
head(int) - Method in class org.deeplearning4j.util.StringGrid
 
heapifyDown(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
heapifyUp(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
hiddenActivation(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
 
hiddenActivation(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
hiddenActivation(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
hiddenActivation(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
hiddenBiasTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
hiddenLayerSizes(Integer[]) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
hiddenLayerSizes(int[]) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
hiddenLayerSizes(Integer[]) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
hiddenLayerSizes(int[]) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
hiddenLayerSizes(Integer[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
hiddenLayerSizes(int[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
hiddenLayerSizes(Integer...) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Size of the hidden neuralNets
hiddenLayerSizes(int...) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
hiddenLayerSizes - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
hiddenSigma - Variable in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
hiddenUnit(RBM.HiddenUnit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
histogram(String[], INDArray[]) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
Histograms the given matrices.
hypergeometric(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a hypergeometric distribution.
hypotenuse(double, double) - Static method in class org.deeplearning4j.util.MathUtils
sqrt(a^2 + b^2) without under/overflow.

I

IdentityHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
idf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Inverse document frequency: the total docs divided by the number of times the word appeared in a document
ImageLoader - Class in org.deeplearning4j.util
Image loader for taking images and converting them to matrices
ImageLoader() - Constructor for class org.deeplearning4j.util.ImageLoader
 
ImageLoader(int, int) - Constructor for class org.deeplearning4j.util.ImageLoader
 
ImageVectorizer - Class in org.deeplearning4j.datasets.vectorizer
An image vectorizer takes an input image (RGB) and transforms it in to a data applyTransformToDestination
ImageVectorizer(File, int, int) - Constructor for class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Baseline knowledge needed for the vectorizer
improvementThreshold() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
 
improvementThreshold(double) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
improvementThreshold() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
 
incrementAll(Collection<? extends E>, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment each element in a given collection by a given amount.
incrementAll(Counter<T>) - Method in class org.deeplearning4j.berkeley.Counter
 
incrementAll(Map<K, V>, double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementAll(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment a key's count by the given amount.
incrementCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Increments the count for a particular (key, value) pair.
incrementFalseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
 
incrementFalsePositives(int) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementTruePositives() - Method in class org.deeplearning4j.eval.Evaluation
 
Index - Class in org.deeplearning4j.util
An index is a applyTransformToDestination of objects augmented with a list and a reverse lookup table for fast lookups.
Index() - Constructor for class org.deeplearning4j.util.Index
 
indexOf(Object) - Method in class org.deeplearning4j.util.Index
 
information(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy for a given vector of probabilities.
init() - Method in class org.deeplearning4j.nn.BaseConvolutionalMultiLayerNetwork
 
init() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
initCalled - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
initCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
Init clusters using the k-means++ algorithm.
initialize(DataSet) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Sets the input and labels from this dataset
initializeCurrFromList(List<DataSet>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Initializes this data applyTransformToDestination fetcher from the passed in datasets
initializeLayers(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Base class for initializing the neuralNets based on the input.
initIfPossible(INDArray) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
initWeights() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Initialize weights.
initWeights(int[], float, float) - Static method in class org.deeplearning4j.nn.WeightInitUtil
 
initWeights(int, int, WeightInit, ActivationFunction, RealDistribution) - Static method in class org.deeplearning4j.nn.WeightInitUtil
Initializes a matrix with the given weight initialization scheme
input - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
input - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
input - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
input - Variable in class org.deeplearning4j.nn.layers.Layer.Builder
 
input(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
inputColumns - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
The length of a feature vector for an individual example
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Input columns for the dataset
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Input columns for the dataset
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Input columns for the dataset
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
InputSplit - Class in org.deeplearning4j.util
 
InputSplit() - Constructor for class org.deeplearning4j.util.InputSplit
 
inputStreamFromPath(String) - Static method in class org.deeplearning4j.util.DeepLearningIOUtil
 
intersection(Collection<T>, Collection<T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intersectionP(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intializeConfigurations() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
intPow(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(float, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(double, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
InvalidStepException - Exception in org.deeplearning4j.exception
Created by agibsonccc on 8/20/14.
InvalidStepException(String) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message.
InvalidStepException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message and cause.
InvalidStepException(Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString()) (which typically contains the class and detail message of cause).
InvalidStepException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message, cause, suppression enabled or disabled, and writable stack trace enabled or disabled.
inverse(RBM.HiddenUnit) - Static method in class org.deeplearning4j.util.RBMUtil
 
inverse(RBM.VisibleUnit) - Static method in class org.deeplearning4j.util.RBMUtil
 
invert() - Method in class org.deeplearning4j.berkeley.CounterMap
Constructs reverse CounterMap where the count of a pair (k,v) is the count of (v,k) in the current CounterMap
iris() - Static method in class org.deeplearning4j.datasets.DataSets
 
iris(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
IrisDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
IrisDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
IrisDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
IrisDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator
 
IrisUtils - Class in org.deeplearning4j.base
 
IrisUtils() - Constructor for class org.deeplearning4j.base.IrisUtils
 
isApplySparsity() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
isConcatBiases() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
isConstrainGradientToUnitNorm() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
isConverged() - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
isConverged() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
isConverged() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
isConverged() - Method in interface org.deeplearning4j.util.OptimizerMatrix
Whether the algorithm is converged
isDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "dangerous" double to have around, namely one that is infinite, NaN or zero.
isDangerous(float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isDiscreteProb(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isEmpty() - Method in class org.deeplearning4j.berkeley.Counter
True if there are no entries in the counter (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.CounterMap
True if there are no entries in the CounterMap (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
isEmpty() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
True if the queue is empty (size == 0).
isEmpty() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map contains no key-value mappings.
isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains no elements.
isEqualTo(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
isEqualTo(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
isGreater(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isReady() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
isSampleFromHiddenActivations() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseAdaGrad() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
isUseDropConnect() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseGaussNewtonVectorProductBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseRegularization() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
isVeryDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "very dangerous" double to have around, namely one that is infinite or NaN.
iterate(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
iterate one iteration of the network
iterate(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
iterate(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
iterate(INDArray, int[], Object[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Iterate once on the model
iterate(INDArray, Object[]) - Method in interface org.deeplearning4j.nn.api.Model
Run one iteration
iterate(INDArray, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run one iteration
iterate(INDArray, int[], Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Iterate once on the model
iterate(INDArray, int[], Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Iterate once on the model
iterate(INDArray, Object[]) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Run one iteration
iterationDone(int) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
iterationDone(int) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
iterationDone(int) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
iterationDone(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
iterationDone(int) - Method in interface org.deeplearning4j.optimize.api.IterationListener
Event listener for each iteration
iterationDone(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
iterationDone(int) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
IterationListener - Interface in org.deeplearning4j.optimize.api
Each epoch the listener is called, mainly used for debugging or visualizations
iterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
iterator() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
iterator() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an iterator over the elements in this applyTransformToDestination.
IteratorIterator(Iterator, Factory<Iterator<T>>) - Constructor for class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
Iterators - Class in org.deeplearning4j.berkeley
 
Iterators.FilteredIterator<T> - Class in org.deeplearning4j.berkeley
Creates an iterator that only returns items of a base iterator that pass a filter.
Iterators.IteratorIterator<T> - Class in org.deeplearning4j.berkeley
Wraps a two-level iteration scenario in an iterator.
Iterators.Transform<S,T> - Class in org.deeplearning4j.berkeley
Wraps a base iterator with a transformation function.
Iterators.TransformingIterator<I,O> - Class in org.deeplearning4j.berkeley
 

J

join(Iterable, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the Collection with the given glue.
join(List<?>, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the List with the given glue.
join(Object[], String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the array with the given glue.
join(List) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.
join(Object[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.

K

k - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
k - Variable in class org.deeplearning4j.optimize.optimizers.rbm.RBMOptimizer
 
keepBottomNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keepTopNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
key(String, Object...) - Method in class org.deeplearning4j.util.FingerPrintKeyer
 
keySet() - Method in class org.deeplearning4j.berkeley.Counter
The elements in the counter.
keySet() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the keys that have been inserted into this CounterMap.
keySet() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Set view of the keys contained in this map.
KMeansClustering - Class in org.deeplearning4j.clustering
Shamelessly based on: https://github.com/pmerienne/trident-ml/blob/master/src/main/java/com/github/pmerienne/trident/ml/clustering/KMeans.java adapted to ndarray matrices
KMeansClustering(Integer, Class<? extends DistanceFunction>) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
KMeansClustering(Integer) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
kroneckerDelta(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the kronecker delta of two doubles.

L

l2(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
l2 - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
l2RegularizedCoefficient() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
labelProbabilities(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Returns the probabilities for each label for each example row wise
labelProbabilities(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the probabilities for each label for each example row wise
labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns the probabilities for each label for each example row wise
labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Returns the probabilities for each label for each example row wise
labels - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
lambert(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
lastMiniBatchSize - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
Layer - Interface in org.deeplearning4j.nn.api
Interface for a layer of a neural network.
Layer - Class in org.deeplearning4j.nn.layers
Vectorized Hidden Layer
Layer(NeuralNetConfiguration, INDArray, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.layers.Layer
 
Layer.Builder - Class in org.deeplearning4j.nn.layers
 
layers - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
layerWiseConfiguration(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
layerWiseConfiguration(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
layerWiseConfiguration(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
layerWiseConfiguration - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
layerWiseConfiguration(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
layerWiseConfigurations - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
learningRate(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
learningRate(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
learningRateUpdate - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
leftChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
LexicographicPairComparator(Comparator<F>, Comparator<S>) - Constructor for class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
LFW - Static variable in class org.deeplearning4j.base.LFWLoader
 
lfw() - Static method in class org.deeplearning4j.datasets.DataSets
 
lfw(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
LFW_URL - Static variable in class org.deeplearning4j.base.LFWLoader
 
LFWDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the LFW faces dataset
LFWDataFetcher(int, int) - Constructor for class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
LFWDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
LFWDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
LFWDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
LFWDataSetIterator(int, int, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
LFWLoader - Class in org.deeplearning4j.base
Loads LFW faces data applyTransformToDestination.
LFWLoader() - Constructor for class org.deeplearning4j.base.LFWLoader
 
LFWLoader(int, int) - Constructor for class org.deeplearning4j.base.LFWLoader
 
LineOptimizerMatrix - Interface in org.deeplearning4j.optimize.api
Line optimizer interface adapted from mallet
LineOptimizerMatrix.ByGradient - Interface in org.deeplearning4j.optimize.api
 
lineSearch(double, INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
Search with the proposed objective
list(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
ListBuilder(List<NeuralNetConfiguration.Builder>) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
ListDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Wraps a data applyTransformToDestination collection
ListDataSetIterator(Collection<DataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
ListDataSetIterator(Collection<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
Initializes with a batch of 5
load(InputStream) - Method in interface org.deeplearning4j.nn.api.Persistable
 
load(InputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Load (using ObjectInputStream
load(InputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Load (using ObjectInputStream
load(InputStream) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
load(InputStream) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
load(InputStream) - Method in class org.deeplearning4j.util.Index
 
load(InputStream) - Method in class org.deeplearning4j.util.Viterbi
 
LoadAndDraw - Class in org.deeplearning4j.datasets.mnist.draw
 
LoadAndDraw() - Constructor for class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
loadIris(int, int) - Static method in class org.deeplearning4j.base.IrisUtils
 
LOCAL_DIR_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
log - Static variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
log - Static variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
log2 - Static variable in class org.deeplearning4j.util.MathUtils
The natural logarithm of 2.
log2(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the logarithm of a for base 2.
logAdd(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(List<Double>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(Counter<T>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logNormalize(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logs2probs(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities.
logSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
LOGTOLERANCE - Static variable in class org.deeplearning4j.berkeley.SloppyMath
If a difference is bigger than this in log terms, then the sum or difference of them will just be the larger (to 12 or so decimal places for double, and 7 or 8 for float).
longestCommonSubstring(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the longest common substring of s and t.
lookingAt(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found at the beginning of this String.
lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
lossFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
lossFunction - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
lr - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 

M

main(String[]) - Static method in class org.deeplearning4j.berkeley.Counter
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.CounterMap
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.PriorityQueue
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Tests the hypergeometric distribution code, or other functions provided in this module.
main(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
main(String[]) - Static method in class org.deeplearning4j.datasets.creator.MnistDataSetCreator
 
main(String[]) - Static method in class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
main(String[]) - Static method in class org.deeplearning4j.eval.ConfusionMatrix
 
makePair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
makeTriple(S, T, U) - Static method in class org.deeplearning4j.berkeley.Triple
 
manhattanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will calculate the Manhattan distance between two sets of points.
mapByPrimaryKey(int) - Method in class org.deeplearning4j.util.StringGrid
 
MapFactory<K,V> - Class in org.deeplearning4j.berkeley
The MapFactory is a mechanism for specifying what kind of map is to be used by some object.
MapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory
 
MapFactory.HashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.IdentityHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.TreeMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.WeakHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
mask - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
matches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression matches this String.
MathUtils - Class in org.deeplearning4j.util
This is a math utils class.
MathUtils() - Constructor for class org.deeplearning4j.util.MathUtils
 
max() - Method in class org.deeplearning4j.berkeley.Counter
 
max(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
max(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two float values.
max(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two double values.
max(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
maxIndex(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns index of maximum element in a given array of doubles.
maxLengthIterator(Iterator<T>, int) - Static method in class org.deeplearning4j.berkeley.Iterators
Provides a max number of elements for an underlying base iterator.
maxStep - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
mean(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Computes the mean for an array of doubles.
merge(NeuralNetwork, int) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
Performs a network merge in the form of a += b - a / n where a is a matrix here b is a matrix on the incoming network and n is the batch size
merge(BaseMultiLayerNetwork, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Merges this network with the other one.
merge(NeuralNetwork, int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Averages the given logistic regression from a mini batch in to this one
merge(int, int) - Method in class org.deeplearning4j.util.StringGrid
 
mergeCoords(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
mergeCoords(List<Double>, List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
min() - Method in class org.deeplearning4j.berkeley.Counter
 
min(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
min(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two float values.
min(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two double values.
min(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
minGain(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
miniBatchSize() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
 
miniBatchSize(int) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
miniBatchSize() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
 
mnist() - Static method in class org.deeplearning4j.datasets.DataSets
 
mnist(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
MnistDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the MNIST dataset
MnistDataFetcher(boolean) - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
Constructor telling whether to binarize the dataset or not
MnistDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataSetCreator - Class in org.deeplearning4j.datasets.creator
 
MnistDataSetCreator() - Constructor for class org.deeplearning4j.datasets.creator.MnistDataSetCreator
 
MnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Mnist data applyTransformToDestination iterator.
MnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
 
MnistDataSetIterator(int, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
Whether to binarize the data or not
MnistDbFile - Class in org.deeplearning4j.datasets.mnist
MNIST database file containing entries that can represent image or label data.
MnistDbFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistDbFile
Creates new instance and reads the header information.
MnistFetcher - Class in org.deeplearning4j.base
 
MnistFetcher() - Constructor for class org.deeplearning4j.base.MnistFetcher
 
MnistImageFile - Class in org.deeplearning4j.datasets.mnist
MNIST database image file.
MnistImageFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistImageFile
Creates new MNIST database image file ready for reading.
MnistLabelFile - Class in org.deeplearning4j.datasets.mnist
MNIST database label file.
MnistLabelFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistLabelFile
Creates new MNIST database label file ready for reading.
MnistManager - Class in org.deeplearning4j.datasets.mnist
Utility class for working with the MNIST database.
MnistManager(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistManager
Constructs an instance managing the two given data files.
Model - Interface in org.deeplearning4j.nn.api
A Model is meant for predicting something from data.
momentum(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
momentum - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
momentumAfter(Map<Integer, Float>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
momentumAfter - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
mostLikelyInSequence(INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
MovingWindowBaseDataSetIterator - Class in org.deeplearning4j.datasets.iterator
DataSetIterator for moving window (rotating matrices)
MovingWindowBaseDataSetIterator(int, int, DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.MovingWindowBaseDataSetIterator
 
MovingWindowDataSetFetcher - Class in org.deeplearning4j.datasets.iterator.impl
Moving window data fetcher.
MovingWindowDataSetFetcher(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
 
MovingWindowMatrix - Class in org.deeplearning4j.util
Moving window on a matrix (usually used for images) Given a: This is a list of flattened arrays: 1 1 1 1 1 1 2 2 2 2 2 2 ----> 1 1 2 2 3 3 3 3 3 3 4 4 4 4 4 4 3 3 4 4
MovingWindowMatrix(INDArray, int, int, boolean) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
 
MovingWindowMatrix(INDArray, int, int) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
Same as calling new MovingWindowMatrix(toSlice,windowRowSize,windowColumnSize,false)
MultiDimensionalMap<K,T,V> - Class in org.deeplearning4j.util
Multiple key map
MultiDimensionalMap(Map<Pair<K, T>, V>) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap
 
MultiDimensionalMap.Entry<K,T,V> - Class in org.deeplearning4j.util
 
MultiDimensionalSet<K,V> - Class in org.deeplearning4j.util
Created by agibsonccc on 4/29/14.
MultiDimensionalSet(Set<Pair<K, V>>) - Constructor for class org.deeplearning4j.util.MultiDimensionalSet
 
MultiLayerGradient - Class in org.deeplearning4j.nn.gradient
Gradient for a whole multi layer network
MultiLayerGradient(List<NeuralNetworkGradient>, OutputLayerGradient) - Constructor for class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
MultiLayerNetworkOptimizer - Class in org.deeplearning4j.optimize.optimizers
Optimizes the logistic layer for finetuning a multi layer network.
MultiLayerNetworkOptimizer(BaseMultiLayerNetwork, double) - Constructor for class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
MultiLayerNetworkReconstructionRender - Class in org.deeplearning4j.plot
Reconstruction renders for a multi layer network
MultiLayerNetworkReconstructionRender(DataSetIterator, BaseMultiLayerNetwork, int) - Constructor for class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
MultiLayerNetworkReconstructionRender(DataSetIterator, BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
MultipleEpochsIterator - Class in org.deeplearning4j.datasets.iterator
A dataset iterator for doing multiple passes over a dataset
MultipleEpochsIterator(int, DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
MyMethod<I,O> - Interface in org.deeplearning4j.berkeley
A function wrapping interface.

N

nChooseK(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Computes n choose k in an efficient way.
nearestCentroid(INDArray) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
negative() - Method in class org.deeplearning4j.eval.Evaluation
Total negatives true negatives + falseNegatives
NegativeDefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Created by agibsonccc on 11/1/14.
NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
network - Variable in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
network - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
NeuralNetConfiguration - Class in org.deeplearning4j.nn.conf
A Serializable configuration for neural nets that covers per layer parameters
NeuralNetConfiguration() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
NeuralNetConfiguration(float, boolean, float, int, float, int, float, float, boolean, Map<Integer, Float>, int, float, boolean, WeightInit, NeuralNetwork.OptimizationAlgorithm, LossFunctions.LossFunction, int, boolean, boolean, RandomGenerator, RealDistribution, long, int, int, ActivationFunction, RBM.VisibleUnit, RBM.HiddenUnit, NeuralNetConfiguration.ActivationType, int[], int[], int, int[], int[], int) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
NeuralNetConfiguration(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
NeuralNetConfiguration.ActivationType - Enum in org.deeplearning4j.nn.conf
 
NeuralNetConfiguration.Builder - Class in org.deeplearning4j.nn.conf
 
NeuralNetConfiguration.ConfOverride - Interface in org.deeplearning4j.nn.conf
Interface for a function to override builder configurations at a particular layer
NeuralNetConfiguration.ListBuilder - Class in org.deeplearning4j.nn.conf
Fluent interface for building a list of configurations
NeuralNetPlotter - Class in org.deeplearning4j.plot
Credit to : http://yosinski.com/media/papers/Yosinski2012VisuallyDebuggingRestrictedBoltzmannMachine.pdf for visualizations
NeuralNetPlotter() - Constructor for class org.deeplearning4j.plot.NeuralNetPlotter
 
neuralNets - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
NeuralNetwork - Interface in org.deeplearning4j.nn.api
Single layer neural network, this is typically one that has the objective function of reconstruction the input: also called feature detectors
NeuralNetwork.OptimizationAlgorithm - Enum in org.deeplearning4j.nn.api
Optimization algorithm to use
NeuralNetworkGradient - Class in org.deeplearning4j.nn.gradient
Represents the gradient for changing a neural network
NeuralNetworkGradient(INDArray, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
NeuralNetworkOptimizer - Class in org.deeplearning4j.optimize.optimizers
Performs basic beam search based on the network's loss function
NeuralNetworkOptimizer(NeuralNetwork, double, Object[], NeuralNetwork.OptimizationAlgorithm, LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
NeuralNetworkReconstructionRender - Class in org.deeplearning4j.plot
Neural Network reconstruction renderer
NeuralNetworkReconstructionRender(DataSetIterator, NeuralNetwork) - Constructor for class org.deeplearning4j.plot.NeuralNetworkReconstructionRender
 
newHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe hash map impl
newInstance(Object...) - Method in class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
newInstance(Object...) - Method in interface org.deeplearning4j.berkeley.Factory
 
newIterable(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
newPair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
newThreadSafeHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe hash map implementation
newThreadSafeTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe sorted map implementation
newTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Tree map implementation
next() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
next() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
next() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the element in the queue with highest priority, and pops it from the queue.
next() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Returns the next data applyTransformToDestination
next(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Like the standard next method but allows a customizable number of examples returned
next() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Like the standard next method but allows a customizable number of examples returned
next() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Returns the next element in the iteration.
next(int) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Like the standard next method but allows a customizable number of examples returned
next() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Returns the next element in the iteration.
next() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the next entry.
next() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
nextBoolean() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextBytes(byte[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextDouble() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextFloat() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextGaussian() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the next image.
nextInt() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextInt(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextList(List<Iterator<T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
nextLong() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextPowOf2(long) - Static method in class org.deeplearning4j.util.MathUtils
See: http://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2
nIn(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
nIn - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
noNaNDivide(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
NONE - Static variable in class org.deeplearning4j.util.StringGrid
 
normal(RandomGenerator, double) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a normal distribution with a mean of 0 and a standard deviation of std
normalize() - Method in class org.deeplearning4j.berkeley.Counter
Destructively normalize this Counter in place.
normalize() - Method in class org.deeplearning4j.berkeley.CounterMap
 
normalize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Normalize the input image by row sums
normalize(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
normalize(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Normalize a value (val - min) / (max - min)
normalize(double[], double) - Static method in class org.deeplearning4j.util.MathUtils
Normalizes the doubles in the array using the given value.
normalizeToOne(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
normalizeWithDiscount(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
nOut(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
nOut - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
nthIndex(String, char, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns the index of the nth occurrence of ch in s, or -1 if there are less than n occurrences of ch.
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
NUM_IMAGES - Static variable in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
numExamples - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Total number of examples in the dataset
numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Total number of examples in the dataset
numExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Total number of examples in the dataset
numExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
numFeatureMaps(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
numInFeatureMaps(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
numIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
numLabels() - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Returns the number of possible labels
numLabels() - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the number of possible labels
numLabels() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns the number of possible labels
numLabels() - Method in class org.deeplearning4j.nn.layers.OutputLayer
Returns the number of possible labels
numOutcomes - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
numParams() - Method in interface org.deeplearning4j.nn.api.Model
The number of parameters for the model
numParams() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the weights for the various neuralNets and output layer
numParams() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
The number of parameters for the model
numParams() - Method in class org.deeplearning4j.nn.layers.OutputLayer
The number of parameters for the model
numTimesIterated - Variable in class org.deeplearning4j.optimize.optimizers.rbm.RBMOptimizer
 
numtimesPredicted(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times a given label was predicted
numTimesPredicted(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Gets the number of times the given class was predicted for the given predicted label

O

objectIterator(ObjectInputStream) - Static method in class org.deeplearning4j.berkeley.Iterators
 
offer(E) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
oneItemIterator(U) - Static method in class org.deeplearning4j.berkeley.Iterators
 
oneTailedFishersExact(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one-tailed Fisher's exact probability.
opt - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
OptimizableByGradientValueMatrix - Interface in org.deeplearning4j.optimize.api
 
optimizationAlgo(NeuralNetwork.OptimizationAlgorithm) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
optimizationAlgo - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
optimizationAlgorithm - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
optimize(INDArray, int, double) - Method in interface org.deeplearning4j.optimize.api.LineOptimizerMatrix.ByGradient
Returns the last step size used.
optimize(INDArray, int, double) - Method in interface org.deeplearning4j.optimize.api.LineOptimizerMatrix
Returns the last step size used.
optimize(TrainingEvaluator) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
optimize(TrainingEvaluator) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
optimize(INDArray, TrainingEvaluator) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
optimize(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
optimize() - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
optimize(int) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
optimize(INDArray, int, double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
 
optimize(INDArray, int, INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
 
optimize() - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
optimize(int) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
optimize() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
optimize(int) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
optimize() - Method in interface org.deeplearning4j.util.OptimizerMatrix
Run optimize
optimize(int) - Method in interface org.deeplearning4j.util.OptimizerMatrix
Run optimize up to the specified number of epochs
optimizer - Variable in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
optimizer - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
optimizer - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
OptimizerMatrix - Interface in org.deeplearning4j.util
Optimizer that handles optimizing parameters.
org.deeplearning4j.base - package org.deeplearning4j.base
 
org.deeplearning4j.berkeley - package org.deeplearning4j.berkeley
 
org.deeplearning4j.clustering - package org.deeplearning4j.clustering
 
org.deeplearning4j.datasets - package org.deeplearning4j.datasets
 
org.deeplearning4j.datasets.creator - package org.deeplearning4j.datasets.creator
 
org.deeplearning4j.datasets.fetchers - package org.deeplearning4j.datasets.fetchers
 
org.deeplearning4j.datasets.iterator - package org.deeplearning4j.datasets.iterator
 
org.deeplearning4j.datasets.iterator.impl - package org.deeplearning4j.datasets.iterator.impl
 
org.deeplearning4j.datasets.mnist - package org.deeplearning4j.datasets.mnist
 
org.deeplearning4j.datasets.mnist.draw - package org.deeplearning4j.datasets.mnist.draw
 
org.deeplearning4j.datasets.test - package org.deeplearning4j.datasets.test
 
org.deeplearning4j.datasets.vectorizer - package org.deeplearning4j.datasets.vectorizer
 
org.deeplearning4j.distributions - package org.deeplearning4j.distributions
 
org.deeplearning4j.eval - package org.deeplearning4j.eval
 
org.deeplearning4j.exception - package org.deeplearning4j.exception
 
org.deeplearning4j.models.classifiers.dbn - package org.deeplearning4j.models.classifiers.dbn
 
org.deeplearning4j.models.classifiers.sae - package org.deeplearning4j.models.classifiers.sae
 
org.deeplearning4j.models.classifiers.sda - package org.deeplearning4j.models.classifiers.sda
 
org.deeplearning4j.models.featuredetectors.autoencoder - package org.deeplearning4j.models.featuredetectors.autoencoder
 
org.deeplearning4j.models.featuredetectors.da - package org.deeplearning4j.models.featuredetectors.da
 
org.deeplearning4j.models.featuredetectors.rbm - package org.deeplearning4j.models.featuredetectors.rbm
 
org.deeplearning4j.nn - package org.deeplearning4j.nn
 
org.deeplearning4j.nn.api - package org.deeplearning4j.nn.api
 
org.deeplearning4j.nn.conf - package org.deeplearning4j.nn.conf
 
org.deeplearning4j.nn.gradient - package org.deeplearning4j.nn.gradient
 
org.deeplearning4j.nn.layers - package org.deeplearning4j.nn.layers
 
org.deeplearning4j.optimize - package org.deeplearning4j.optimize
 
org.deeplearning4j.optimize.api - package org.deeplearning4j.optimize.api
 
org.deeplearning4j.optimize.optimizers - package org.deeplearning4j.optimize.optimizers
 
org.deeplearning4j.optimize.optimizers.autoencoder - package org.deeplearning4j.optimize.optimizers.autoencoder
 
org.deeplearning4j.optimize.optimizers.da - package org.deeplearning4j.optimize.optimizers.da
 
org.deeplearning4j.optimize.optimizers.rbm - package org.deeplearning4j.optimize.optimizers.rbm
 
org.deeplearning4j.optimize.solvers - package org.deeplearning4j.optimize.solvers
 
org.deeplearning4j.optimize.stepfunctions - package org.deeplearning4j.optimize.stepfunctions
 
org.deeplearning4j.plot - package org.deeplearning4j.plot
 
org.deeplearning4j.rng - package org.deeplearning4j.rng
 
org.deeplearning4j.util - package org.deeplearning4j.util
 
output(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Label the probabilities of the input
output(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Classify input
OutputLayer - Class in org.deeplearning4j.nn.layers
Output layer with different objective functions for different objectives.
OutputLayer(NeuralNetConfiguration, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.layers.OutputLayer
 
OutputLayer.Builder - Class in org.deeplearning4j.nn.layers
 
OutputLayerGradient - Class in org.deeplearning4j.nn.gradient
 
OutputLayerGradient(INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
OutputLayerOptimizer - Class in org.deeplearning4j.optimize.optimizers
Output layer optimizer
OutputLayerOptimizer(OutputLayer, double) - Constructor for class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
OutputLayerTrainingEvaluator - Class in org.deeplearning4j.optimize
An output layer training evaluator uses a multi layer networks output and score functions to determine if training iterations should continue
OutputLayerTrainingEvaluator(BaseMultiLayerNetwork, double, double, double, int, int, DataSet, double) - Constructor for class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
 
OutputLayerTrainingEvaluator.Builder - Class in org.deeplearning4j.optimize
 
override(int, NeuralNetConfiguration.Builder) - Method in interface org.deeplearning4j.nn.conf.NeuralNetConfiguration.ConfOverride
 
override(NeuralNetConfiguration.ConfOverride) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 

P

pack() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Packs a set of matrices in to one vector, where the matrices in this case are the w,hbias at each layer and the output layer w,bias
pack(List<Pair<INDArray, INDArray>>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Packs a set of matrices in to one vector
pad(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Return a String of length a minimum of totalChars characters by padding the input String str with spaces.
pad(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the toString value of the given Object.
padLeft(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the given String to the left with spaces to ensure that it's at least totalChars long.
padLeft(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(double, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padOrTrim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim so as to produce a string of exactly a certain length.
padOrTrim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim the toString value of the given Object.
paintComponent(Graphics) - Method in class org.deeplearning4j.plot.FilterPanel
 
Pair<F,S> - Class in org.deeplearning4j.berkeley
A generic-typed pair of objects.
Pair(F, S) - Constructor for class org.deeplearning4j.berkeley.Pair
 
Pair.DefaultLexicographicPairComparator<F extends Comparable<F>,S extends Comparable<S>> - Class in org.deeplearning4j.berkeley
 
Pair.FirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.LexicographicPairComparator<F,S> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseFirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseSecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.SecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
params() - Method in interface org.deeplearning4j.nn.api.Model
Parameters of the model (if any)
params() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the weights for the various neuralNets(w,hbias NOT VBIAS) and output layer
params() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Returns the parameters of the neural network
params() - Method in class org.deeplearning4j.nn.layers.OutputLayer
Returns the coefficients for this classifier as a raveled vector
parent(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
parse(String, Class<E>) - Static method in class org.deeplearning4j.util.EnumUtil
 
parseCommandLineArguments(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
A simpler form of command line argument parsing.
partitionVariable(List<Double>, int) - Static method in class org.deeplearning4j.util.MathUtils
This will partition the given whole variable data applyTransformToDestination in to the specified chunk number.
patience() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
 
patience(double) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
patience() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
 
patienceIncrease() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
Amount patience should be increased when a new best threshold is hit
patienceIncrease(double) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
patienceIncrease() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
Amount patience should be increased when a new best threshold is hit
peek() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
peek() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the highest-priority element in the queue, but does not pop it.
peek() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
pennPOSToWordnetPOS(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the WordNet 2.0 POS tag corresponding to the PTB POS tag s.
permutation(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the permutation of n choose r.
perplexity(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
Persistable - Interface in org.deeplearning4j.nn.api
 
plot(INDArray, int, List<String>) - Method in class org.deeplearning4j.plot.Tsne
Plot tsne
plotActivations(Layer) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotActivations(NeuralNetwork) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotNetworkGradient(Layer, INDArray, int) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotNetworkGradient(NeuralNetwork, NeuralNetworkGradient, int) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotter - Variable in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
plotter - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
poll() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
positive() - Method in class org.deeplearning4j.eval.Evaluation
Returns all of the positive guesses: true positive + false negative
precision() - Method in class org.deeplearning4j.eval.Evaluation
Total precision based on guesses so far
precision(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the precision for a given label
predict(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Takes in a list of examples For each row, returns a label
predict(INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
predict(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns the predictions for each example in the dataset
predict(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Returns the predictions for each example in the dataset
preOutput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Classify input
prependToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
preProcess(DataSet) - Method in interface org.deeplearning4j.datasets.iterator.DataSetPreProcessor
Pre process a dataset
preProcessInput(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
preProcessor - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
pretrain(boolean) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
Whether to pretrain or not
pretrain(DataSetIterator, Object[]) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
 
pretrain(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
 
pretrain(DataSetIterator, int, float, int) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(INDArray, int, float, int) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(int, float, int) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN
 
pretrain(DataSetIterator, Object[]) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
pretrain(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
pretrain(boolean) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
Whether to pretrain or not
pretrain(float, float, int) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
 
pretrain(DataSetIterator, Object[]) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
Pretrain with a data applyTransformToDestination iterator.
pretrain(DataSetIterator, float, float, int) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(INDArray, Object[]) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
 
pretrain(INDArray, float, float, int) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
Unsupervised pretraining based on reconstructing the input from a corrupted version
pretrain(INDArray, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Pretrain the network with the given parameters
pretrain(DataSetIterator, Object[]) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Pretrain with a data applyTransformToDestination iterator.
pretrain - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
pretrain(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Whether to pretrain or not
pretrain - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
pretrain(DataSetIterator, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
pretrain(INDArray, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
prev() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the previous entry.
prevImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the previous image.
printConfiguration() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Prints the configuration
printStringOneCharPerLine(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
printToFile(File, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(File, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
PriorityQueue<E> - Class in org.deeplearning4j.berkeley
A priority queue based on a binary heap.
PriorityQueue() - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueue(int) - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueueInterface<E> - Interface in org.deeplearning4j.berkeley
 
probRound(double, Random) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value in a probabilistic fashion (e.g.
probToLogOdds(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the log-odds for a given probability.
propDown(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Calculates the activation of the hidden: sigmoid(h * W + vbias)
propUp(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Calculates the activation of the visible : sigmoid(v * W + hbias)
pruneKeysBelowThreshold(double) - Method in class org.deeplearning4j.berkeley.Counter
 
put(E, double, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key if it is larger than the previous one;
put(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
put(E, double) - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Adds a key to the queue with the given priority.
put(Pair<K, T>, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Associates the specified value with the specified key in this map (optional operation).
put(K, T, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
putAll(Map<? extends Pair<K, T>, ? extends V>) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Copies all of the mappings from the specified map to this map (optional operation).

R

randomDoubleBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
randomFloatBetween(float, float) - Static method in class org.deeplearning4j.util.MathUtils
 
randomNumberBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a random integer between the specified numbers
randomNumberBetween(double, double, RandomGenerator) - Static method in class org.deeplearning4j.util.MathUtils
Generates a random integer between the specified numbers
RawMnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Mnist data with scaled pixels
RawMnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.RawMnistDataSetIterator
 
RBM - Class in org.deeplearning4j.models.featuredetectors.rbm
Restricted Boltzmann Machine.
RBM() - Constructor for class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
RBM(INDArray, INDArray, INDArray, INDArray, NeuralNetConfiguration) - Constructor for class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
RBM.Builder - Class in org.deeplearning4j.models.featuredetectors.rbm
 
RBM.HiddenUnit - Enum in org.deeplearning4j.models.featuredetectors.rbm
 
RBM.VisibleUnit - Enum in org.deeplearning4j.models.featuredetectors.rbm
 
RBMOptimizer - Class in org.deeplearning4j.optimize.optimizers.rbm
Optimizes an RBM.
RBMOptimizer(BaseNeuralNetwork, float, Object[], NeuralNetwork.OptimizationAlgorithm, LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.optimize.optimizers.rbm.RBMOptimizer
 
RBMUtil - Class in org.deeplearning4j.util
Handles various functions for RBM specific functions
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Reads the image at the current position.
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current image.
readjustToData() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
Reads the integer at the current position.
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current label.
readObject(File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
readObject(InputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Reads an object from the given input stream
readString(DataInputStream, int) - Static method in class org.deeplearning4j.util.ByteUtil
 
recall() - Method in class org.deeplearning4j.eval.Evaluation
Returns the recall for the outcomes
reconstruct(INDArray, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Reconstructs the input.
ReconstructionDataSetIterator - Class in org.deeplearning4j.datasets.iterator
Wraps a data applyTransformToDestination iterator setting the first (feature matrix) as the labels.
ReconstructionDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
 
reductionRatio(INDArray, double, double, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
regularization(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
relativeDifferance(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
remove() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
remove() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Not supported -- next() already removes the head of the queue.
remove() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Removes from the underlying collection the last element returned by this iterator (optional operation).
remove() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Removes from the underlying collection the last element returned by this iterator (optional operation).
remove() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
remove(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
remove() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Removes the mapping for a key from this map if it is present (optional operation).
remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes the specified element from this applyTransformToDestination if it is present (optional operation).
removeAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
removeAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes from this applyTransformToDestination all of its elements that are contained in the specified collection (optional operation).
removeColumns(Integer...) - Method in class org.deeplearning4j.util.StringGrid
Removes the specified columns from the grid
removeFirst() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
removeKey(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removeKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
removeKeyFromEntries(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removeRowsWithEmptyColumn(int) - Method in class org.deeplearning4j.util.StringGrid
Removes all rows with a column of NONE
removeRowsWithEmptyColumn(int, String) - Method in class org.deeplearning4j.util.StringGrid
Removes all rows with a column of missingValue
render(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
renderActivations(int, int, INDArray, String, int) - Method in class org.deeplearning4j.plot.FilterRenderer
 
renderFilter(INDArray, int, int, long) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
renderFilters(INDArray, String, int, int, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Once the probability image and weight histograms are behaving satisfactorily, we plot the learned filter for each hidden neuron, one per column of W.
renderHiddenBiases(int, int, INDArray, String) - Method in class org.deeplearning4j.plot.FilterRenderer
 
renderHistogram(INDArray, String, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Groups values into 1 of 10 bins, sums, and renders NOTE: this is "render histogram BS code"; - I'm not exactly concerned with how pretty it is.
renderWeightsEveryNumEpochs - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
reset() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Returns the fetcher back to the beginning of the dataset
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Resets the iterator back to the beginning
reset() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Resets the iterator back to the beginning
reset() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Resets the iterator back to the beginning
reset() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
reset() - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
reset() - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
resetAdaGradIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
resetAdaGradIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
retainAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
retainAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Retains only the elements in this applyTransformToDestination that are contained in the specified collection (optional operation).
reverse() - Method in class org.deeplearning4j.berkeley.Pair
 
ReverseFirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
ReverseSecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
rightChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
rng(RandomGenerator) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
rng - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
rootMeansSquaredError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the root mean squared error of two data sets
round(double, int, int) - Static method in class org.deeplearning4j.plot.FilterRenderer
 
round(double) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value.
roundDouble(double, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.
roundFloat(float, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.

S

sample(Random) - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample() - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sampleDoublesInInterval(double[][], int) - Static method in class org.deeplearning4j.util.MathUtils
 
sampleFromHiddenActivations - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
Sample hidden mean and sample given visible
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Binomial sampling of the hidden values given visible
sampleHiddenGivenVisible(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
Sample hidden mean and sample given visible
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
Sample visible mean and sample given hidden
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Guess the visible values given the hidden
sampleVisibleGivenHidden(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
Sample visible mean and sample given hidden
SamplingDataSetIterator - Class in org.deeplearning4j.datasets.iterator
A wrapper for a dataset to sample from.
SamplingDataSetIterator(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
saveImageToDisk(BufferedImage, String) - Static method in class org.deeplearning4j.plot.FilterRenderer
 
saveObject(Object, File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
saveToDisk(String) - Method in class org.deeplearning4j.plot.FilterRenderer
 
scale(double) - Method in class org.deeplearning4j.berkeley.Counter
 
scale(double) - Method in class org.deeplearning4j.berkeley.CounterMap
Scale all entries in CounterMap by scaleFactor
scaledClone(double) - Method in class org.deeplearning4j.berkeley.Counter
 
scatter(String[], INDArray[]) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
Histograms the given matrices.
score(DataSet) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
Sets the input and labels and returns a score for the prediction wrt true labels
score() - Method in interface org.deeplearning4j.nn.api.Classifier
Assuming an input and labels are already set will score based on what's already set
score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Sets the input and labels and returns a score for the prediction wrt true labels
score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the f1 score for the given examples.
score() - Method in interface org.deeplearning4j.nn.api.Model
 
score(DataSet) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
score(DataSet) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
score() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Score of the model (relative to the objective function)
score(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Score of the model (relative to the objective function)
score() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
score() - Method in class org.deeplearning4j.nn.layers.OutputLayer
Objective function: the specified objective
score(DataSet) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Sets the input and labels and returns a score for the prediction wrt true labels
score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Returns the f1 score for the given examples.
SecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.SecondComparator
 
seed(long) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
select(int, String) - Method in class org.deeplearning4j.util.StringGrid
 
SemanticHashing - Class in org.deeplearning4j.models.featuredetectors.autoencoder
Encapsulates a deep auto encoder and decoder (the transpose of an encoder).
SemanticHashing() - Constructor for class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
SemanticHashing.Builder - Class in org.deeplearning4j.models.featuredetectors.autoencoder
 
SequenceClassifier - Interface in org.deeplearning4j.nn.api
Created by agibsonccc on 8/27/14.
SerializationUtils - Class in org.deeplearning4j.util
Serialization utils for saving and reading serializable objects
SerializationUtils() - Constructor for class org.deeplearning4j.util.SerializationUtils
 
serialVersionUID - Static variable in class org.deeplearning4j.nn.layers.Layer
 
setAbsTolx(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
Sets the tolerance of absolute diff in function value.
setAbsTolx(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
Sets the tolerance of absolute diff in function value.
setActivationFunction(ActivationFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setActivationType(NeuralNetConfiguration.ActivationType) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setAdaGrad(AdaGrad) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setAdaGrad(AdaGrad) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setAdaGrad(AdaGrad) - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
setAllCounts(double) - Method in class org.deeplearning4j.berkeley.Counter
Sets all counts to the given value, but does not remove any keys
setApplySparsity(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setB(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
 
setB(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setbGradient(INDArray) - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
setBiasAdaGrad(AdaGrad) - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
setBiasEnd(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
setBiasStart(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
setClassifier(NeuralNetConfiguration) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Set the configuration for classification
setClassifier(NeuralNetConfiguration, boolean) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Set the conf for classification
setConcatBiases(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setConf(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setConfiguration(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.Layer
 
setConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setConstrainGradientToUnitNorm(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setCorruptionLevel(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key, clobbering any previous count.
setCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Sets the count for a particular (key, value) pair.
setCounter(K, Counter<V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setCurrent(int) - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Set the position to be read.
setCurrentIndex(long) - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Set the required current entry index.
setCurrentIteration(int) - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
setCurrentIteration(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
setCurrentIteration(int) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
setCurrentIteration(int) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
setCurrentIteration(int) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
setCurrentIteration(int) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
setDefault(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setDefaultConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setDeflt(double) - Method in class org.deeplearning4j.berkeley.Counter
 
setDgg(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setDirty(boolean) - Method in class org.deeplearning4j.berkeley.Counter
 
setDist(RealDistribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setDropOut(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setEncoder(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing
 
setFeatureMapSize(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setFilterSize(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setFinalMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setFinetuneEpochs(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setFinetuneLearningRate(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setFirst(F) - Method in class org.deeplearning4j.berkeley.Pair
 
setFirst(S) - Method in class org.deeplearning4j.berkeley.Triple
 
setFirstKey(K) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
setForceNumEpochs(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setFp(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setFret(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setG(INDArray) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setGam(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setGg(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setGradients(List<NeuralNetworkGradient>) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
setH(INDArray) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
sethBias(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
sethBias(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setHbiasAdaGrad(AdaGrad) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setHbiasAdaGrad(AdaGrad) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
sethBiasGradient(INDArray) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
setHiddenLayerSizes(int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setHiddenUnit(RBM.HiddenUnit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setInitialMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setInitialStepSize(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
setInitialStepSize(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setInput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
 
setInput(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setInput(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Note that if input isn't null and the neuralNets are null, this is a way of initializing the neural network
setInput(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setInput(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setIterationListener(IterationListener) - Method in class org.deeplearning4j.plot.Tsne
 
setK(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setL2(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setLabels(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
setLayers(Layer[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLayers(NeuralNetwork[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLayerWiseConfigurations(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLineMaximizer(LineOptimizerMatrix) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setLogMetaInstability(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogOfDiangnalTProb(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogPCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogPIncorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogRegGradient(OutputLayerGradient) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
setLogStates(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setLr(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setMask(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setMax(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMaxCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the maximum of the current count and val.
setMaxIter(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setMaxIterations(int) - Method in interface org.deeplearning4j.util.OptimizerMatrix
The default max number of iterations to run
setMaxStepSize(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
setMean(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMetaStability(double) - Method in class org.deeplearning4j.util.Viterbi
 
setMin(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMinCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the minimum of the current count and val.
setMomentum(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setMomentumAfter(Map<Integer, Float>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setNeuralNets(NeuralNetwork[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnIn(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setnLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnOut(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setNumFeatureMaps(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setNumInFeatureMaps(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setNumIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setOptimizationAlgo(NeuralNetwork.OptimizationAlgorithm) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setParameter(int, double) - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
setParameters(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Sets parameters for the model.
setParameters(INDArray) - Method in interface org.deeplearning4j.optimize.api.OptimizableByGradientValueMatrix
 
setParameters(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.BackPropOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
setParameters(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.BackPropROptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
setParameters(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.MultiLayerNetworkOptimizer
 
setParameters(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
setParameters(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.OutputLayerOptimizer
 
setParams(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Set the parameters for this model.
setParams(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Set the parameters for this model.
setParams(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Set the parameters for this model.
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Set the parameters for this model.
setpCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setPicDraw(MatrixTransform) - Method in class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
 
setPossibleLabels(INDArray) - Method in class org.deeplearning4j.util.Viterbi
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
Set a pre processor
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
Set a pre processor
setPretrainEpochs(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setPretrainLearningRate(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setRealMin(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setReconDraw(MatrixTransform) - Method in class org.deeplearning4j.plot.DeepAutoEncoderDataSetReconstructionRender
 
setRelTolx(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
Sets the tolerance of relative diff in function value.
setRelTolx(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
Sets the tolerance of relative diff in function value.
setRenderWeightIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setResetAdaGradIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setSampleFromHiddenActivations(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSecond(S) - Method in class org.deeplearning4j.berkeley.Pair
 
setSecond(T) - Method in class org.deeplearning4j.berkeley.Triple
 
setSecondKey(T) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
setSeed(long) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setSeed(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(int[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(long) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSparsity(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setStates(int) - Method in class org.deeplearning4j.util.Viterbi
 
setStep(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setStpmax(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
 
setStpmax(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
 
setStpmax(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
setStride(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setSum(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setSwitchMomentumIteration(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setThird(U) - Method in class org.deeplearning4j.berkeley.Triple
 
setTolerance(double) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
The tolerance for change when running
setTolerance(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
Sets the tolerance in the convergence test: 2.0*|value-old_value| <= tolerance*(|value|+|old_value|+eps) Default value is 0.001.
setTolerance(double) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setTolerance(double) - Method in interface org.deeplearning4j.util.OptimizerMatrix
The tolerance for change when running
setTrainingEvaluator(TrainingEvaluator) - Method in class org.deeplearning4j.optimize.solvers.StochasticHessianFree
Sets the training evaluator
setTrainingEvaluator(TrainingEvaluator) - Method in class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
Sets the training evaluator
setTrainingEvaluator(TrainingEvaluator) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
Sets the training evaluator
setTrainingEvaluator(TrainingEvaluator) - Method in interface org.deeplearning4j.util.OptimizerMatrix
Sets the training evaluator
setUseAdaGrad(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setUseDropConnect(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setUseGaussNewtonVectorProductBackProp(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
SetUtils - Class in org.deeplearning4j.util
 
setValue(V) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
Replaces the value corresponding to this entry with the specified value (optional operation).
setvBias(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setvBias(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setVBiasAdaGrad(AdaGrad) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setVBiasAdaGrad(AdaGrad) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setvBiasGradient(INDArray) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
setVisibleUnit(RBM.VisibleUnit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setW(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
 
setW(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
setW(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setW(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setWeightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setWeightShape(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setwEnd(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
setwGradient(INDArray) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
setwGradient(INDArray) - Method in class org.deeplearning4j.nn.gradient.OutputLayerGradient
 
setwStart(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.ParamRange
 
setXi(INDArray) - Method in class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
setY(INDArray) - Method in class org.deeplearning4j.plot.Tsne
 
shouldForceEpochs - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
shouldStop(int) - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
Whether to terminate or not
shouldStop(int) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
Whether to terminate or not
sigma - Variable in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
sigmoid(double) - Static method in class org.deeplearning4j.util.MathUtils
1 / 1 + exp(-x)
size() - Method in class org.deeplearning4j.berkeley.Counter
The number of entries in the counter (not the total count -- use totalCount() instead).
size() - Method in class org.deeplearning4j.berkeley.CounterMap
The number of keys in this CounterMap (not the number of key-value entries -- use totalSize() for that)
size() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
size() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Number of elements in the queue.
size() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
size() - Method in class org.deeplearning4j.util.Index
 
size() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns the number of key-value mappings in this map.
size() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns the number of elements in this applyTransformToDestination (its cardinality).
SizeComparator() - Constructor for class org.deeplearning4j.util.StringCluster.SizeComparator
 
slope(double, double, double, double) - Method in class org.deeplearning4j.util.MathUtils
This returns the slope of the given points.
SloppyMath - Class in org.deeplearning4j.berkeley
The class SloppyMath contains methods for performing basic numeric operations.
SloppyMath() - Constructor for class org.deeplearning4j.berkeley.SloppyMath
 
slurpFile(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file
slurpFileNoExceptions(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFileNoExceptions(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpGBFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpGBURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpReader(Reader) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text from the given Reader.
slurpURL(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
sm(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is smaller than b.
SMALL - Static variable in class org.deeplearning4j.util.MathUtils
The small deviation allowed in double comparisons.
sort() - Method in class org.deeplearning4j.util.StringCluster
 
sortBy(int) - Method in class org.deeplearning4j.util.StringGrid
 
sortColumnsByWordLikelihoodIncluded(int) - Method in class org.deeplearning4j.util.StringGrid
 
sparsity(float) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
split(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits on whitespace (\\s+).
split(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits the given string using the given regex as delimiters.
split(int, String) - Method in class org.deeplearning4j.util.StringGrid
 
splitInputs(INDArray, INDArray, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitInputs(List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitOnCharWithQuoting(String, char, char, char) - Static method in class org.deeplearning4j.berkeley.StringUtils
This function splits the String s into multiple Strings using the splitChar.
squaredLoss(double[], double[], double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the squared loss of the given points
ssError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is NOT explained by the regression
ssReg(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is explained by the regression
ssTotal(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Total variance in target attribute
StackedAutoEncoder - Class in org.deeplearning4j.models.classifiers.sae
Created by mjk on 9/17/14.
StackedAutoEncoder() - Constructor for class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
StackedDenoisingAutoEncoder - Class in org.deeplearning4j.models.classifiers.sda
Stacked Denoising AutoEncoders are merely denoising autoencoders who's inputs feed in to the next one.
StackedDenoisingAutoEncoder() - Constructor for class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder.Builder - Class in org.deeplearning4j.models.classifiers.sda
 
start() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
start() - Method in class org.deeplearning4j.plot.FilterRenderer
 
startIndexForLayer(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns a start index for a given layer (neural net or outputlayer)
stats() - Method in class org.deeplearning4j.eval.Evaluation
 
step(INDArray, INDArray, Object[]) - Method in interface org.deeplearning4j.optimize.api.StepFunction
Step with the given parameters
step(INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.api.StepFunction
Step with no parameters
step() - Method in interface org.deeplearning4j.optimize.api.StepFunction
 
step(INDArray, INDArray, Object[]) - Method in class org.deeplearning4j.optimize.stepfunctions.BackPropStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.BackPropStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.BackPropStepFunction
 
step(INDArray, INDArray, Object[]) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
step(INDArray, INDArray, Object[]) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step(INDArray, int) - Method in class org.deeplearning4j.plot.Tsne
An individual iteration
StepFunction - Interface in org.deeplearning4j.optimize.api
Custom step function for line search
StochasticHessianFree - Class in org.deeplearning4j.optimize.solvers
Hessian Free Optimization by Ryan Kiros http://www.cs.toronto.edu/~rkiros/papers/shf13.pdf
StochasticHessianFree(OptimizableByGradientValueMatrix, double, BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
StochasticHessianFree(OptimizableByGradientValueMatrix, IterationListener, BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
StochasticHessianFree(OptimizableByGradientValueMatrix, double, IterationListener, BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
StochasticHessianFree(OptimizableByGradientValueMatrix, BaseMultiLayerNetwork) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticHessianFree
 
stopLyingIteration(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
stride(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
StringCluster - Class in org.deeplearning4j.util
Clusters strings based on fingerprint: for example Two words and TWO words or WORDS TWO would be put together
StringCluster(List<String>) - Constructor for class org.deeplearning4j.util.StringCluster
 
StringCluster.SizeComparator - Class in org.deeplearning4j.util
 
StringGrid - Class in org.deeplearning4j.util
String matrix
StringGrid(StringGrid) - Constructor for class org.deeplearning4j.util.StringGrid
 
StringGrid(String, int) - Constructor for class org.deeplearning4j.util.StringGrid
 
StringGrid(String, Collection<String>) - Constructor for class org.deeplearning4j.util.StringGrid
 
stringSimilarity(String...) - Static method in class org.deeplearning4j.util.MathUtils
Calculate string similarity with tfidf weights relative to each character frequency and how many times a character appears in a given string
stringToProperties(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
This method converts a comma-separated String (with whitespace optionally allowed after the comma) representing properties to a Properties object.
StringUtils - Class in org.deeplearning4j.berkeley
StringUtils is a class for random String things.
stripDuplicateRows() - Method in class org.deeplearning4j.util.StringGrid
 
stripNonAlphaNumerics(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
SubsamplingLayer - Class in org.deeplearning4j.nn.layers
Sub sampling layer
SubsamplingLayer(NeuralNetConfiguration, INDArray, INDArray, INDArray) - Constructor for class org.deeplearning4j.nn.layers.SubsamplingLayer
 
sum(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of the given array.
SummaryStatistics - Class in org.deeplearning4j.util
 
summaryStats(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
 
summaryStatsString(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
 
sumOfMeanDifferences(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfMeanDifferencesOnePoint(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfProducts(double[]...) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of products for the given numbers.
sumOfSquares(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of squares for the given vector.
swap(int, int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
swap(int, int) - Method in class org.deeplearning4j.util.StringGrid
 
SynchronizedRandomGenerator - Class in org.deeplearning4j.rng
Any RandomGenerator implementation can be thread-safe if it is used through an instance of this class.
SynchronizedRandomGenerator(RandomGenerator) - Constructor for class org.deeplearning4j.rng.SynchronizedRandomGenerator
Creates a synchronized wrapper for the given RandomGenerator instance.

T

TestDataSetIterator - Class in org.deeplearning4j.datasets.test
Track number of times the dataset iterator has been called
TestDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.test.TestDataSetIterator
 
testSet(DataSet) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
tf(int) - Static method in class org.deeplearning4j.util.MathUtils
Term frequency: 1+ log10(count)
tfidf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Return td * idf
thread(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Executes calls to next() in a different thread
times(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the product of all numbers in the given array.
title - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
title - Variable in class org.deeplearning4j.plot.FilterRenderer
 
toArray() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
toArray(T[]) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
toArray() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an array containing all of the elements in this applyTransformToDestination.
toArray(T[]) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an array containing all of the elements in this applyTransformToDestination; the runtime type of the returned array is that of the specified array.
toBufferedImage(Image) - Static method in class org.deeplearning4j.util.ImageLoader
Converts a given Image into a BufferedImage
toByteArray(Serializable) - Static method in class org.deeplearning4j.util.SerializationUtils
Converts the given object to a byte array
toCSV() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
toDecimal(String) - Static method in class org.deeplearning4j.util.MathUtils
This will convert the given binary string to a decimal based integer
toHTML() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs Confusion Matrix in an HTML table.
toImage(INDArray) - Static method in class org.deeplearning4j.util.ImageLoader
 
tolerance - Variable in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
tolerance(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
toLines() - Method in class org.deeplearning4j.util.StringGrid
 
toLogSpace() - Method in class org.deeplearning4j.berkeley.Counter
 
toString() - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation with the keys ordered by decreasing counts.
toString(int) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts and optionally prints one element per line.
toString(int) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString(Collection<String>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.Pair
 
toString() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order, displaying at most maxKeysToPrint elements and optionally printing one element per line.
toString() - Method in class org.deeplearning4j.berkeley.Triple
 
toString() - Method in class org.deeplearning4j.eval.ConfusionMatrix
 
toString() - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
toString() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
toString() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
toString() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
toString() - Method in class org.deeplearning4j.nn.layers.OutputLayer
 
toString() - Method in class org.deeplearning4j.util.Index
 
toString() - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
toString() - Method in class org.deeplearning4j.util.SummaryStatistics
 
toStringSortedByKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
toStringTabSeparated() - Method in class org.deeplearning4j.berkeley.Counter
 
totalCount() - Method in class org.deeplearning4j.berkeley.Counter
Finds the total of all counts in the counter.
totalCount() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total of all counts in sub-counters.
totalExamples - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
The total number of examples
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
Total examples in the iterator
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Total examples in the iterator
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Total examples in the iterator
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
The number of labels for a dataset
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
The number of labels for the dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
The number of labels for the dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
The number of labels for the dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
totalSize() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total number of (key, value) entries in the CounterMap (not their total counts).
train(INDArray, float, float, int) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
Perform one iteration of training
train(double) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Train with current input and labels with the given learning rate
train(INDArray, double) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Train with the given input and the currently applyTransformToDestination labels
train(INDArray, INDArray, double) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Train on the given inputs and labels.
train(INDArray) - Method in class org.deeplearning4j.optimize.optimizers.NeuralNetworkOptimizer
 
TrainingEvaluator - Interface in org.deeplearning4j.optimize.api
Training evaluator, used for determining early stop
trainingFileLabelsFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainingFilesFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainTillConvergence(INDArray, INDArray, double, int) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Run conjugate gradient with the given x and y
trainTillConvergence(INDArray, double, int, TrainingEvaluator) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Run the optimization algorithm for training
trainTillConvergence(double, int, TrainingEvaluator) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Run the optimization algorithm for training
trainTillConvergence(double, int) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Run conjugate gradient
Transform(Iterator<S>) - Constructor for class org.deeplearning4j.berkeley.Iterators.Transform
 
transform(S) - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
transform(INDArray) - Method in class org.deeplearning4j.models.classifiers.sae.StackedAutoEncoder
 
transform(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.AutoEncoder
All neural networks are based on this idea of minimizing reconstruction error.
transform(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder
 
transform(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
Reconstructs the visible input.
transform(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Transform the data based on the model's output.
transform(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Transform the data based on the model's output.
transform(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
All neural networks are based on this idea of minimizing reconstruction error.
transform(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer
Transform the data based on the model's output.
TransformingIterator(Iterator<I>, MyMethod<I, O>) - Constructor for class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
A map of transformations for transforming the given neuralNets
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
A map of transformations for transforming the given neuralNets
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
A map of transformations for transforming the given neuralNets
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
A map of transformations for transforming the given neuralNets
transpose() - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM
 
transpose() - Method in interface org.deeplearning4j.nn.api.Layer
Return a transposed copy of the weights/bias (this means reverse the number of inputs and outputs on the weights)
transpose() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
 
transpose() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
transpose() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
TreeMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
treeSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
trim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns s if it's at most maxWidth chars, otherwise chops right side to fit.
trim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
Triple<S,T,U> - Class in org.deeplearning4j.berkeley
 
Triple(S, T, U) - Constructor for class org.deeplearning4j.berkeley.Triple
 
trueNegatives() - Method in class org.deeplearning4j.eval.Evaluation
True negatives: correctly rejected
truncate(int, int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
This returns a string from decimal digit smallestDigit to decimal digit biggest digit.
Tsne - Class in org.deeplearning4j.plot
Tsne calculation
Tsne(int, double, double, double, double, int, boolean, boolean, int, double, double, boolean, double, double) - Constructor for class org.deeplearning4j.plot.Tsne
 
Tsne.Builder - Class in org.deeplearning4j.plot
 

U

uniform(RandomGenerator, double) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a uniform distribution with a min of -fanIn and a max of positivefanIn
uniform(RandomGenerator, double, double) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a uniform distribution with a min of min and max of fanOut
uniform(RandomGenerator, int, int) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a uniform distribution based on the number of ins and outs
uniform(RandomGenerator) - Static method in class org.deeplearning4j.distributions.Distributions
Returns a uniform distribution with a min of -fanIn and a max of positivefanIn
uniform(Random, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generate a uniform random number from the given rng
uniformBasedOnInAndOut(int[], int, int) - Static method in class org.deeplearning4j.nn.WeightInitUtil
Generate a random matrix with respect to the number of inputs and outputs.
union(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
unPack(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Unpacks a parameter matrix in to a applyTransformToDestination of pairs(w,hbias) triples with layer wise
unsafeAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
unsafeSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
untarFile(File, File) - Method in class org.deeplearning4j.base.LFWLoader
 
untarFile(File, File) - Method in class org.deeplearning4j.base.MnistFetcher
 
unzipFileTo(String, String) - Static method in class org.deeplearning4j.util.ArchiveUtils
Extracts files to the specified destination
update(INDArray) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
update(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Assigns the parameters of this model to the ones specified by this network.
update(BaseNeuralNetwork) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Copies params from the passed in network to this one
updateGradientAccordingToParams(NeuralNetworkGradient, int, double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
useAdaGrad(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
useAdaGrad(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
useDropConnect - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
useDropConnection(boolean) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
Use drop connect on activations or not
useDropConnection(boolean) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
Use drop connect on activations or not
useDropConnection(boolean) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
Use drop connect on activations or not
useDropConnection(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Use drop connect on activations or not
useGaussNewtonVectorProductBackProp(boolean) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
useGaussNewtonVectorProductBackProp(boolean) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
useGaussNewtonVectorProductBackProp(boolean) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
Use gauss newton back prop - this is for hessian free
useGaussNewtonVectorProductBackProp(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Use gauss newton back prop - this is for hessian free
useGaussNewtonVectorProductBackProp - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
usePca(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
useRegularization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 

V

validationEpochs() - Method in interface org.deeplearning4j.optimize.api.TrainingEvaluator
The number of epochs to test on
validationEpochs(int) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
validationEpochs() - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator
The number of epochs to test on
valueOf(String) - Static method in enum org.deeplearning4j.models.featuredetectors.rbm.RBM.HiddenUnit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.models.featuredetectors.rbm.RBM.VisibleUnit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.api.NeuralNetwork.OptimizationAlgorithm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.NeuralNetConfiguration.ActivationType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.WeightInit
Returns the enum constant of this type with the specified name.
values() - Static method in enum org.deeplearning4j.models.featuredetectors.rbm.RBM.HiddenUnit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.models.featuredetectors.rbm.RBM.VisibleUnit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.api.NeuralNetwork.OptimizationAlgorithm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.NeuralNetConfiguration.ActivationType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.WeightInit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Collection view of the values contained in this map.
vBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
vBiasAdaGrad - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
vBiasGradient - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
vectorize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
 
vectorize() - Method in interface org.deeplearning4j.datasets.vectorizer.Vectorizer
Vectorizes the input source in to a dataset
VectorizedBackTrackLineSearch - Class in org.deeplearning4j.optimize.solvers
 
VectorizedBackTrackLineSearch(OptimizableByGradientValueMatrix, StepFunction) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
 
VectorizedBackTrackLineSearch(OptimizableByGradientValueMatrix) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearch
 
VectorizedBackTrackLineSearchMinimum - Class in org.deeplearning4j.optimize.solvers
 
VectorizedBackTrackLineSearchMinimum(OptimizableByGradientValueMatrix) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedBackTrackLineSearchMinimum
 
VectorizedDeepLearningGradientAscent - Class in org.deeplearning4j.optimize.solvers
Vectorized Stochastic Gradient Ascent
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, double, StepFunction) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, IterationListener, StepFunction) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, double, IterationListener, StepFunction) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, double) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix, double, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedDeepLearningGradientAscent(OptimizableByGradientValueMatrix) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedDeepLearningGradientAscent
 
VectorizedNonZeroStoppingConjugateGradient - Class in org.deeplearning4j.optimize.solvers
Modified based on cc.mallet.optimize.ConjugateGradient

no termination when zero tolerance

VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, double) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, double, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, StepFunction) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, StepFunction, double) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, StepFunction, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix, double, StepFunction, IterationListener) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
VectorizedNonZeroStoppingConjugateGradient(OptimizableByGradientValueMatrix) - Constructor for class org.deeplearning4j.optimize.solvers.VectorizedNonZeroStoppingConjugateGradient
 
Vectorizer - Interface in org.deeplearning4j.datasets.vectorizer
A Vectorizer at its essence takes an input source and converts it to a matrix for neural network consumption.
vectorLength(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the vector length (sqrt(sum(x_i))
visibleBiasTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
visibleUnit(RBM.VisibleUnit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
Viterbi - Class in org.deeplearning4j.util
Based on the impl from: https://gist.github.com/rmcgibbo/3915977
Viterbi(INDArray) - Constructor for class org.deeplearning4j.util.Viterbi
The possible outcomes for the chain.

W

W - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
W - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
W - Variable in class org.deeplearning4j.nn.layers.Layer.Builder
 
w_0(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
w_1(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
wAdaGrad - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
WeakHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
weightInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
WeightInit - Enum in org.deeplearning4j.nn
Weight initialization scheme
WeightInitUtil - Class in org.deeplearning4j.nn
Weight initialization utility
WeightInitUtil() - Constructor for class org.deeplearning4j.nn.WeightInitUtil
 
weightMatrices() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
weightsFor(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightsFor(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightShape(int[]) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
weightTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
weightTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
wGradient - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
windows() - Method in class org.deeplearning4j.util.MovingWindowMatrix
Returns a list of non flattened moving window matrices
windows(boolean) - Method in class org.deeplearning4j.util.MovingWindowMatrix
Moving window, capture a row x column moving window of a given matrix
withActivationType(NeuralNetConfiguration.ActivationType) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
withBias(INDArray) - Method in class org.deeplearning4j.nn.layers.Layer.Builder
 
withBias(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withClazz(Class<? extends BaseNeuralNetwork>) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
withClazz(Class<? extends BaseNeuralNetwork>) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withClazz(Class<? extends BaseNeuralNetwork>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withEncoder(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withHBias(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
withHBias(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
withHBias(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withHiddenBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
withHiddenBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
withHiddenBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withHiddenBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withInput(INDArray) - Method in class org.deeplearning4j.nn.layers.Layer.Builder
 
withLabels(INDArray) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
withLabels(INDArray) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
withLabels(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withLabels(INDArray) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
withNetwork(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.optimize.OutputLayerTrainingEvaluator.Builder
 
withVisibleBias(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
withVisibleBias(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
withVisibleBias(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withVisibleBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.dbn.DBN.Builder
 
withVisibleBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.classifiers.sda.StackedDenoisingAutoEncoder.Builder
 
withVisibleBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.models.featuredetectors.autoencoder.SemanticHashing.Builder
 
withVisibleBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withWeights(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.da.DenoisingAutoEncoder.Builder
 
withWeights(INDArray) - Method in class org.deeplearning4j.models.featuredetectors.rbm.RBM.Builder
 
withWeights(INDArray) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withWeights(INDArray) - Method in class org.deeplearning4j.nn.layers.Layer.Builder
 
withWeights(INDArray) - Method in class org.deeplearning4j.nn.layers.OutputLayer.Builder
 
write(OutputStream) - Method in interface org.deeplearning4j.nn.api.Persistable
 
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Write this to an object output stream
write(OutputStream) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
write(OutputStream) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
write(OutputStream) - Method in class org.deeplearning4j.util.Index
 
write(OutputStream) - Method in class org.deeplearning4j.util.Viterbi
 
writeImageToPpm(int[][], String) - Static method in class org.deeplearning4j.datasets.mnist.MnistManager
Writes the given image in the given file using the PPM data format.
writeLinesTo(String) - Method in class org.deeplearning4j.util.StringGrid
 
writeMatrix(INDArray) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
writeObject(Serializable, OutputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Writes the object to the output stream THIS DOES NOT FLUSH THE STREAM

X

xVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the x values of the given vector.

Y

yVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the odd indexed values for the given vector

Z

zip(Iterator<S>, Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
A B C D E F G H I J K L M N O P R S T U V W X Y Z 
Skip navigation links

Copyright © 2014. All rights reserved.