public class KMeansClustering extends Object implements Serializable
Constructor and Description |
---|
KMeansClustering(Integer nbCluster) |
KMeansClustering(Integer nbCluster,
Class<? extends org.nd4j.linalg.distancefunction.DistanceFunction> clazz) |
Modifier and Type | Method and Description |
---|---|
Integer |
classify(org.nd4j.linalg.api.ndarray.INDArray features) |
protected org.nd4j.linalg.api.ndarray.INDArray |
computeDxs() |
org.nd4j.linalg.api.ndarray.INDArray |
distribution(org.nd4j.linalg.api.ndarray.INDArray features) |
org.nd4j.linalg.api.ndarray.INDArray |
getCentroids() |
protected void |
initCentroids()
Init clusters using the k-means++ algorithm.
|
protected void |
initIfPossible(org.nd4j.linalg.api.ndarray.INDArray features) |
protected boolean |
isReady() |
protected Integer |
nearestCentroid(org.nd4j.linalg.api.ndarray.INDArray features) |
void |
reset() |
Integer |
update(org.nd4j.linalg.api.ndarray.INDArray features) |
public KMeansClustering(Integer nbCluster, Class<? extends org.nd4j.linalg.distancefunction.DistanceFunction> clazz)
public KMeansClustering(Integer nbCluster)
public Integer classify(org.nd4j.linalg.api.ndarray.INDArray features)
public Integer update(org.nd4j.linalg.api.ndarray.INDArray features)
public org.nd4j.linalg.api.ndarray.INDArray distribution(org.nd4j.linalg.api.ndarray.INDArray features)
public org.nd4j.linalg.api.ndarray.INDArray getCentroids()
protected Integer nearestCentroid(org.nd4j.linalg.api.ndarray.INDArray features)
protected boolean isReady()
protected void initIfPossible(org.nd4j.linalg.api.ndarray.INDArray features)
protected void initCentroids()
protected org.nd4j.linalg.api.ndarray.INDArray computeDxs()
public void reset()
Copyright © 2014. All rights reserved.