public class ConjugateGradient extends BaseOptimizer
adaGrad, adaGradForVariable, conf, GRADIENT_KEY, iteration, iterationListeners, lineMaximizer, log, model, oldScore, PARAMS_KEY, score, SCORE_KEY, searchState, step, stepFunction, stpMax, terminationConditions
Constructor and Description |
---|
ConjugateGradient(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<IterationListener> iterationListeners,
Collection<TerminationCondition> terminationConditions,
Model model) |
ConjugateGradient(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<IterationListener> iterationListeners,
Model model) |
Modifier and Type | Method and Description |
---|---|
void |
postStep()
Post step (conjugate gradient among other methods needs this)
|
void |
preProcessLine(org.nd4j.linalg.api.ndarray.INDArray line)
Pre process the line (scaling and the like)
|
void |
setupSearchState(Pair<Gradient,Double> pair)
Setup the initial search state
|
adaGradForVariables, batchSize, getAdaGrad, getAdaGradForVariable, gradientAndScore, optimize, postFirstStep, preFirstStepProcess, score, setBatchSize, updateGradientAccordingToParams, updateGradientAccordingToParams
public ConjugateGradient(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<IterationListener> iterationListeners, Model model)
public ConjugateGradient(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<IterationListener> iterationListeners, Collection<TerminationCondition> terminationConditions, Model model)
public void preProcessLine(org.nd4j.linalg.api.ndarray.INDArray line)
BaseOptimizer
preProcessLine
in interface ConvexOptimizer
preProcessLine
in class BaseOptimizer
line
- the line to pre processpublic void postStep()
BaseOptimizer
postStep
in interface ConvexOptimizer
postStep
in class BaseOptimizer
public void setupSearchState(Pair<Gradient,Double> pair)
BaseOptimizer
setupSearchState
in interface ConvexOptimizer
setupSearchState
in class BaseOptimizer
pair
- the gradient and scoreCopyright © 2015. All Rights Reserved.