public class BarnesHutTsne extends Tsne implements Model
Tsne.Builder
Modifier and Type | Field and Description |
---|---|
static String |
Y_GRAD |
adaGrad, finalMomentum, gains, initialMomentum, iterationListener, learningRate, log, maxIter, minGain, momentum, normalize, r, r2, realMin, stopLyingIteration, switchMomentumIteration, tolerance, useAdaGrad, usePca, y, yIncs
Constructor and Description |
---|
BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x,
int n,
int d,
org.nd4j.linalg.api.ndarray.INDArray y,
int numDimensions,
double perplexity,
double theta,
int maxIter,
int stopLyingIteration,
int momentumSwitchIteration,
double momentum,
double finalMomentum,
double learningRate) |
Modifier and Type | Method and Description |
---|---|
int |
batchSize()
The current inputs batch size
|
org.nd4j.linalg.api.ndarray.INDArray |
computeGaussianPerplexity(org.nd4j.linalg.api.ndarray.INDArray d,
double u)
Convert data to probability
co-occurrences (aka calculating the kernel)
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data)
Fit the model to the given data
|
Gradient |
getGradient()
Calculate a gradient
|
org.nd4j.linalg.api.ndarray.INDArray |
getYGradient(int n,
org.nd4j.linalg.api.ndarray.INDArray PQ,
org.nd4j.linalg.api.ndarray.INDArray qu) |
protected Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> |
gradient(org.nd4j.linalg.api.ndarray.INDArray p) |
Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
hBeta(org.nd4j.linalg.api.ndarray.INDArray d,
org.nd4j.linalg.api.ndarray.INDArray distances,
double beta)
Computes a gaussian kernel
given a vector of squared euclidean distances
|
org.nd4j.linalg.api.ndarray.INDArray |
input()
The input/feature matrix for the model
|
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input)
Run one iteration
|
int |
numParams()
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Parameters of the model (if any)
|
double |
score()
The score for the model
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
org.nd4j.linalg.api.ndarray.INDArray |
transform(org.nd4j.linalg.api.ndarray.INDArray data)
Transform the data based on the model's output.
|
void |
update(Gradient gradient)
Perform one update applying the gradient
|
void |
validateInput()
Validate the input
|
calculate, getIterationListener, getY, hBeta, loadIntoTmp, plot, plot, setIterationListener, setY, step
public static final String Y_GRAD
public BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x, int n, int d, org.nd4j.linalg.api.ndarray.INDArray y, int numDimensions, double perplexity, double theta, int maxIter, int stopLyingIteration, int momentumSwitchIteration, double momentum, double finalMomentum, double learningRate)
public org.nd4j.linalg.api.ndarray.INDArray computeGaussianPerplexity(org.nd4j.linalg.api.ndarray.INDArray d, double u)
computeGaussianPerplexity
in class Tsne
d
- the data to convertu
- the perplexity of the modelpublic org.nd4j.linalg.api.ndarray.INDArray input()
Model
public void validateInput()
Model
validateInput
in interface Model
protected Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> gradient(org.nd4j.linalg.api.ndarray.INDArray p)
public org.nd4j.linalg.api.ndarray.INDArray getYGradient(int n, org.nd4j.linalg.api.ndarray.INDArray PQ, org.nd4j.linalg.api.ndarray.INDArray qu)
getYGradient
in class Tsne
public Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> hBeta(org.nd4j.linalg.api.ndarray.INDArray d, org.nd4j.linalg.api.ndarray.INDArray distances, double beta)
d
- the databeta
- public void fit()
Model
public void update(Gradient gradient)
Model
public double score()
Model
public org.nd4j.linalg.api.ndarray.INDArray transform(org.nd4j.linalg.api.ndarray.INDArray data)
Model
public org.nd4j.linalg.api.ndarray.INDArray params()
Model
public int numParams()
Model
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Model
public void fit(org.nd4j.linalg.api.ndarray.INDArray data)
Model
public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
Model
public Gradient getGradient()
Model
getGradient
in interface Model
public Pair<Gradient,Double> gradientAndScore()
Model
gradientAndScore
in interface Model
public int batchSize()
Model
public NeuralNetConfiguration conf()
Model
public void setConf(NeuralNetConfiguration conf)
Model
Copyright © 2015. All rights reserved.