A B C D E F G H I J K L M N O P R S T U V W X Y Z 

A

able(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
abs(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
accept(T) - Method in interface org.deeplearning4j.berkeley.Filter
 
activate() - Method in class org.deeplearning4j.nn.HiddenLayer
Trigger an activation with the last specified input
activate(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
Initialize the layer with the given input and return the activation for this layer given this input
activation - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
ActivationFunction - Interface in org.deeplearning4j.nn.activation
An activation function for a hidden layer for neural networks
add(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
add(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by one.
add(T, T, int) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by count.
add(ConfusionMatrix<T>) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Adds the entries from another confusion matrix to this one.
add(LogisticRegressionGradient) - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
Sums this gradient with the given one
add(NeuralNetworkGradient) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
Adds the given gradient and this one together
Add - Class in org.deeplearning4j.transformation
 
Add() - Constructor for class org.deeplearning4j.transformation.Add
 
add(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
addExp(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
addExp_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Similar to logAdd, but without the final log.
addRow(DataSet, int) - Method in class org.deeplearning4j.datasets.DataSet
 
AddScalar - Class in org.deeplearning4j.transformation
 
AddScalar(double) - Constructor for class org.deeplearning4j.transformation.AddScalar
 
addToConfusion(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Adds to the confusion matrix
adjustedrSquared(double, int, int) - Static method in class org.deeplearning4j.util.MathUtils
This calculates the adjusted r^2 including degrees of freedom.
allMatches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
appendTo(String, File) - Static method in class org.deeplearning4j.util.FileOperations
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.CosineSimilarity
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.EuclideanDistance
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.ManhattanDistance
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.HardTanh
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Sigmoid
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Tanh
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Add
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.AddScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Divide
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.ExpTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.LogTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Multiply
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.MultiplyScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.PowScale
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.ScalarMatrixTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.SqrtScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Subtract
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.SubtractScalar
 
applyDerivative(DoubleMatrix) - Method in interface org.deeplearning4j.nn.activation.ActivationFunction
Applies the derivative of this function
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.HardTanh
 
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Sigmoid
 
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Tanh
 
applyTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
approxEquals(Counter<E>, double) - Method in class org.deeplearning4j.berkeley.Counter
 
approxExp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxLog(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxPow(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
argMax() - Method in class org.deeplearning4j.berkeley.Counter
Finds the key with maximum count.
argMax() - Method in class org.deeplearning4j.berkeley.CounterMap
Finds the key with maximum count.
argsToMap(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToMap(String[], Map<String, Integer>) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToProperties(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
argsToProperties(String[], Map) - Static method in class org.deeplearning4j.berkeley.StringUtils
ArrayUtil - Class in org.deeplearning4j.util
 
ArrayUtil() - Constructor for class org.deeplearning4j.util.ArrayUtil
 
asCounter() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a counter whose keys are the elements in this priority queue, and whose counts are the priorities in this queue.
asDecoder(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Set as decoder for another neural net designed for encoding (primary output is encoding input)
asList() - Method in class org.deeplearning4j.datasets.DataSet
 
asMatrix(File) - Method in class org.deeplearning4j.util.ImageLoader
 
asMinPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Warning: all priorities are the negative of their counts in the counter here
asPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Builds a priority queue whose elements are the counter's elements, and whose priorities are those elements' counts in the counter.
asRowVector(File) - Method in class org.deeplearning4j.util.ImageLoader
 
assertIntMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
asType(Class<E>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
avg(DoubleMatrix...) - Static method in class org.deeplearning4j.util.MatrixUtil
 

B

backProp(double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Backpropagation of errors for weights
backProp - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
backPropStep(Double, BaseMultiLayerNetwork, double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Do a back prop iteration.
base - Variable in class org.deeplearning4j.distancefunction.BaseDistanceFunction
 
BaseDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
BaseDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
BaseDatasetIterator - Class in org.deeplearning4j.datasets.iterator
Baseline implementation includes control over the data fetcher and some basic getters for metadata
BaseDatasetIterator(int, int, DataSetFetcher) - Constructor for class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
BaseDistanceFunction - Class in org.deeplearning4j.distancefunction
Takes in another matrix
BaseDistanceFunction(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.BaseDistanceFunction
 
BaseMultiLayerNetwork - Class in org.deeplearning4j.nn
A base class for a multi layer neural network with a logistic output layer and multiple hidden layers.
BaseMultiLayerNetwork() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork.Builder<E extends BaseMultiLayerNetwork> - Class in org.deeplearning4j.nn
 
BaseMultiLayerNetwork.Builder() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
BaseNeuralNetwork - Class in org.deeplearning4j.nn
Baseline class for any Neural Network used as a layer in a deep network such as an DBN
BaseNeuralNetwork() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork(int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork.Builder<E extends BaseNeuralNetwork> - Class in org.deeplearning4j.nn
 
BaseNeuralNetwork.Builder() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
batch - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
batch() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
batchBy(int) - Method in class org.deeplearning4j.datasets.DataSet
 
batchByNumLabels() - Method in class org.deeplearning4j.datasets.DataSet
 
bernoullis(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the bernoulli trial for the given event.
binomial(RandomGenerator, int, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a binomial distributed number using the given rng
binomial(DoubleMatrix, int, RandomGenerator) - Static method in class org.deeplearning4j.util.MatrixUtil
Generate a binomial distribution based on the given rng, a matrix of p values, and a max number.
build() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
buildCounter(MapFactory<V, Double>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
ByteUtil - Class in org.deeplearning4j.util
 
ByteUtil() - Constructor for class org.deeplearning4j.util.ByteUtil
 

C

call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
 
capitalize(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Uppercases the first character of a string.
CDBN - Class in org.deeplearning4j.dbn
Continuous Deep Belief Network.
CDBN() - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN.Builder - Class in org.deeplearning4j.dbn
 
CDBN.Builder() - Constructor for class org.deeplearning4j.dbn.CDBN.Builder
 
chiSquare2by2(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a 2x2 chi-square value.
choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
This will return the cholesky decomposition of the given matrix
clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
Clamps the value to a discrete value
classCount(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times the given label has actually occurred
classify(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
clazz - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
clazz - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
clear() - Method in class org.deeplearning4j.berkeley.Counter
 
clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a clone of this priority queue.
clone() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
clone() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
clone() - Method in class org.deeplearning4j.nn.HiddenLayer
 
clone() - Method in class org.deeplearning4j.nn.LogisticRegression
 
clone() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
close() - Method in class org.deeplearning4j.plot.FilterRenderer
 
columnNormalizeBySum(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
columnStd(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Calculates the column wise standard deviations of the matrix
columnStdDeviation(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
columnWiseMean(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the combination of n choose r
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
 
complainAboutMissMatchedMatrices(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
computeDxs() - Method in class org.deeplearning4j.clustering.KMeansClustering
For each features in KMeans#initFeatures, compute D(x), the distance between x and the nearest center that has already been chosen.
computeHistogramBucketIndex(double, double, double, int) - Method in class org.deeplearning4j.plot.FilterRenderer
 
computeHistogramBucketIndexAlt(double, double, double, int) - Method in class org.deeplearning4j.plot.FilterRenderer
This is faster but produces rounding errors
concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
This data structure provides an easy way to build and output a confusion matrix.
ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates an empty confusion Matrix
ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
Returns whether the counter contains the given key.
containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
contrastiveDivergence(double, int, DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Contrastive divergence revolves around the idea of approximating the log likelihood around x1(input) with repeated sampling.
convertListPairs(List<Pair<DoubleMatrix, DoubleMatrix>>) - Method in class org.deeplearning4j.base.LFWLoader
 
coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
copy() - Method in class org.deeplearning4j.datasets.DataSet
 
correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the correlation coefficient of two double vectors.
cosine(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
cosineSim(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
CosineSimilarity - Class in org.deeplearning4j.distancefunction
 
CosineSimilarity(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.CosineSimilarity
 
Counter<E> - Class in org.deeplearning4j.berkeley
A map from objects to doubles.
Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
CounterMap<K,V> - Class in org.deeplearning4j.berkeley
Maintains counts of (key, value) pairs.
CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CRBM - Class in org.deeplearning4j.rbm
Continuous Restricted Boltzmann Machine
CRBM() - Constructor for class org.deeplearning4j.rbm.CRBM
 
CRBM(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.CRBM
 
CRBM.Builder - Class in org.deeplearning4j.rbm
 
CRBM.Builder() - Constructor for class org.deeplearning4j.rbm.CRBM.Builder
 
createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
 
createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.dbn.CDBN
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.dbn.DBN
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Creates a layer depending on the index.
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
createNetworkLayers(int) - Method in class org.deeplearning4j.dbn.CDBN
 
createNetworkLayers(int) - Method in class org.deeplearning4j.dbn.DBN
 
createNetworkLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
createNetworkLayers(int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
cursor() - Method in class org.deeplearning4j.test.TestDataSetIterator
 

D

DataSet - Class in org.deeplearning4j.datasets
A data set (example/outcome pairs) The outcomes are specifically for neural network encoding such that any labels that are considered true are 1s.
DataSet() - Constructor for class org.deeplearning4j.datasets.DataSet
 
DataSet(Pair<DoubleMatrix, DoubleMatrix>) - Constructor for class org.deeplearning4j.datasets.DataSet
 
DataSet(DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.datasets.DataSet
 
dataSetBatches(int) - Method in class org.deeplearning4j.datasets.DataSet
Partitions the data set by the specified number.
DataSetFetcher - Interface in org.deeplearning4j.datasets.iterator
 
DataSetIterator - Interface in org.deeplearning4j.datasets.iterator
 
DataSets - Class in org.deeplearning4j.datasets
 
DataSets() - Constructor for class org.deeplearning4j.datasets.DataSets
 
DataSetTester - Class in org.deeplearning4j.eval
DataSet runner main class.
DataSetTester(String, String, Integer) - Constructor for class org.deeplearning4j.eval.DataSetTester
 
DataSetTester(String, String) - Constructor for class org.deeplearning4j.eval.DataSetTester
 
DBN - Class in org.deeplearning4j.dbn
Deep Belief Network.
DBN() - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN.Builder - Class in org.deeplearning4j.dbn
 
DBN.Builder() - Constructor for class org.deeplearning4j.dbn.DBN.Builder
 
decode(DoubleMatrix) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
decodeNetwork(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Whether the network is a decoder for an auto encoder
DeepAutoEncoder - Class in org.deeplearning4j.autoencoder
 
DeepAutoEncoder(BaseMultiLayerNetwork, Object[]) - Constructor for class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
DeepLearningException - Exception in org.deeplearning4j.exception
 
DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningIOUtil - Class in org.deeplearning4j.util
 
DeepLearningIOUtil() - Constructor for class org.deeplearning4j.util.DeepLearningIOUtil
 
DeepLearningTest - Class in org.deeplearning4j.base
 
DeepLearningTest() - Constructor for class org.deeplearning4j.base.DeepLearningTest
 
DenoisingAutoEncoder - Class in org.deeplearning4j.da
Denoising Autoencoder.
DenoisingAutoEncoder() - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder.Builder - Class in org.deeplearning4j.da
 
DenoisingAutoEncoder.Builder() - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder.Builder
 
DenoisingAutoEncoderOptimizer - Class in org.deeplearning4j.sda
 
DenoisingAutoEncoderOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.sda.DenoisingAutoEncoderOptimizer
 
determinationCoefficient(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
This returns the determination coefficient of two vectors given a length
difference(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
difference(Collection<? extends T>, Collection<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
Return is s1 \ s2
disableBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Disables back propagation
discretize(double, double, double, int) - Static method in class org.deeplearning4j.util.MathUtils
Discretize the given value
discretizeColumns(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
dist - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
dist - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
dist(RealDistribution) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
distanceFinderZValue(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will translate a vector in to an equivalent integer
DistanceFunction - Interface in org.deeplearning4j.distancefunction
 
distribution(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
div(int) - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
Divies the gradient by the given number (used in averaging)
div(int) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
div(int) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
Divides the gradients by the given number
divColumnsByStDeviation(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Divides the given matrix's columns by each column's respective standard deviations
Divide - Class in org.deeplearning4j.transformation
 
Divide() - Constructor for class org.deeplearning4j.transformation.Divide
 
dot(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
dotProduct(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
downloadAndUntar() - Method in class org.deeplearning4j.base.MnistFetcher
 
draw() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
draw() - Method in class org.deeplearning4j.plot.FilterRenderer
 
DrawMnist - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawMnist() - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
drawMnist(DataSet, DoubleMatrix) - Static method in class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
DrawMnistGreyScale - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawMnistGreyScale(DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
DrawMnistGreyScale(DoubleMatrix) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 

E

editDistance(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the Levenshtein (edit) distance of the two given Strings.
empty() - Static method in class org.deeplearning4j.datasets.DataSet
 
emptyIterator() - Static method in class org.deeplearning4j.berkeley.Iterators
 
encode(DoubleMatrix) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
encode(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Transposes this network to turn it in to ad encoder for the given auto encoder networkk
ensureCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
ensureValidOutcomeMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
entropy(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy (information gain, or uncertainty of a random variable).
entrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
epochDone(int) - Method in interface org.deeplearning4j.optimize.NeuralNetEpochListener
 
epochDone(int) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Pair
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Triple
 
equals(Object) - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
equals(Object) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
errorFor(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
errors - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
errorTolerance - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
escapeString(String, char[], char) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
EuclideanDistance - Class in org.deeplearning4j.distancefunction
 
EuclideanDistance(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.EuclideanDistance
 
euclideanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
euclideanDistance(float[], float[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
eval(DoubleMatrix, DoubleMatrix) - Method in class org.deeplearning4j.eval.Evaluation
Collects statistics on the real outcomes vs the guesses.
Evaluation - Class in org.deeplearning4j.eval
Evaluation metrics: precision, recall, f1
Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
 
exactBinomial(int, int, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one tailed exact binomial test probability.
exampleMaxs() - Method in class org.deeplearning4j.datasets.DataSet
 
exampleMeans() - Method in class org.deeplearning4j.datasets.DataSet
 
exampleSums() - Method in class org.deeplearning4j.datasets.DataSet
 
exp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
ExpTransform - Class in org.deeplearning4j.transformation
 
ExpTransform() - Constructor for class org.deeplearning4j.transformation.ExpTransform
 
extraParams - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 

F

f1() - Method in class org.deeplearning4j.eval.Evaluation
 
f1(int) - Method in class org.deeplearning4j.eval.Evaluation
Calculate f1 score for a given class
factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the factorial of the given number n.
Factory<T> - Interface in org.deeplearning4j.berkeley
 
Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
 
Factory.DefaultFactory(Class) - Constructor for class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
fanIn - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
fanIn() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns the -fanIn to fanIn coefficient used for initializing the weights.
fanIn(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
fanIn - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
fanIn() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
fanIn() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
feedForward(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Compute activations from input to output of the output layer
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
fileNameClean(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns a "clean" version of the given filename in which spaces have been converted to dashes and all non-alphaneumeric chars are underscores.
FileOperations - Class in org.deeplearning4j.util
 
fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
Filter<T> - Interface in org.deeplearning4j.berkeley
Filters are boolean functions which accept or reject items.
filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
FilterRenderer - Class in org.deeplearning4j.plot
Adapted from: https://github.com/jpatanooga/Metronome/blob/master/src/main/java/tv/floe/metronome/deeplearning/rbm/visualization/RBMRenderer.java
FilterRenderer() - Constructor for class org.deeplearning4j.plot.FilterRenderer
 
find(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found inside this String.
finetune(double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
finetune(DoubleMatrix, double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run SGD based on the given labels
flatten(int[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
flatten(double[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
flattenedImageFromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
forceEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceNumEpochs - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
frame - Variable in class org.deeplearning4j.plot.FilterRenderer
 
fromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
fromImageFile(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
This will take a given string and separator and convert it to an equivalent double array.

G

generateHistogramBuckets(DoubleMatrix, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Take some matrix input data and a bucket count and compute: - a list of N buckets, each with: 1.
generateUniform(int) - Static method in class org.deeplearning4j.util.MathUtils
This will generate a series of uniformally distributed numbers between l times
get(int) - Method in class org.deeplearning4j.datasets.DataSet
 
getActivation() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getActivation() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getActivationFunction() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getActualTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class actually appeared in the data.
getAllImagesAsMatrix() - Method in class org.deeplearning4j.base.LFWLoader
 
getAllImagesAsMatrix(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getB() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getB() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getbGradient() - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
getCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
getClasses() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the set of all classes in the confusion matrix.
getCols() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of columns per image.
getColumnMeans() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getColumnStds() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getColumnSums() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getCorruptedInput(DoubleMatrix, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Corrupts the given input by doing a binomial sampling given the corruption level
getCount(E) - Method in class org.deeplearning4j.berkeley.Counter
Get the count of the element, or zero if the element is not in the counter.
getCount(K, V) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the count of the given (key, value) entry, or zero if that entry is not present.
getCount(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the total count of the given key, or zero if that key is not present.
getCount() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getCount(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the count of the number of times the "predicted" class was predicted for the "actual" class.
getCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the sub-counter for the given key.
getCounters() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getCurrentIndex() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
The current entry index.
getDataFor(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getDeflt() - Method in class org.deeplearning4j.berkeley.Counter
 
getDist() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getDist() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getDist() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getDist() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Number of bytes for each entry.
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getErrors() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getErrorTolerance() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getFaces(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick first num faces
getFaces() - Method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick all faces
getFacesMatrix() - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick all faces
getFanIn() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getFanIn() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getFirst(int) - Method in class org.deeplearning4j.base.LFWLoader
Get the first num found images
getFirst() - Method in class org.deeplearning4j.berkeley.Pair
 
getFirst() - Method in class org.deeplearning4j.berkeley.Triple
 
getFirstFaces(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick first num faces
getGradient(Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getGradient(Object[], double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Gets the multi layer gradient for this network.
getGradient(double) - Method in class org.deeplearning4j.nn.LogisticRegression
Gets the gradient from one training iteration
getGradient(Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getGradient(Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
getGradients() - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
gethBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
gethBias() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
gethBiasGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getHiddenBiasTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getHiddenLayerSizes() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getHiddenLayerSizes() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getHiddenValues(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getIfNotExists() - Method in class org.deeplearning4j.base.LFWLoader
 
getImage() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
getImage() - Method in class org.deeplearning4j.plot.FilterRenderer
 
getImages(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
getImages() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying images file as MnistImageFile.
getImagesAsList() - Method in class org.deeplearning4j.base.LFWLoader
 
getInitialStepSize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getInput() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getInput() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getInput() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getInput() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getInput() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getIris() - Static method in class org.deeplearning4j.base.DeepLearningTest
 
getIris(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
 
getL2() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getL2() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getL2() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getL2() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getL2() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getLabels() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying labels file as MnistLabelFile.
getLabels() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLabels() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLearningRateUpdate() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLogLayer() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getLogLayer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLogRegGradient() - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
MNIST DB files start with unique integer number.
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
 
getMaxIterations() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getMnistExample(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMnistExampleBatch(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMnistExampleBatches(int, int) - Method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMomentum() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getMomentum() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getMomentum() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getMomentum() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getnHidden() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getnHidden() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getnIn() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getnIn() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getnIns() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnIns() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnLayers() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnOut() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getnOut() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getnOuts() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnOuts() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getNumDataSets() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
getNumNames() - Method in class org.deeplearning4j.base.LFWLoader
 
getNumParameters() - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getNumPixelColumns() - Method in class org.deeplearning4j.base.LFWLoader
 
getnVisible() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getnVisible() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getOptimizable() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getOptimizer() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getOptimizer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getPairIterator() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getParameter(int) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getPredictedTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class was predicted by the classifier.
getPriority() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
getPriority() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Gets the priority of the highest-priority element of the queue.
getProbability(E) - Method in class org.deeplearning4j.berkeley.Counter
I know, I know, this should be wrapped in a Distribution class, but it's such a common use...why not.
getReconstructedInput(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getReconstructionCrossEntropy() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getReConstructionCrossEntropy() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Reconstruction entropy.
getReConstructionCrossEntropy() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRenderEpochs() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getRenderEpochs() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRenderWeightsEveryNEpochs() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getRenderWeightsEveryNEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getRng() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getRng() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getRng() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getRng() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getRng() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRows() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of rows per image.
getSecond() - Method in class org.deeplearning4j.berkeley.Pair
 
getSecond() - Method in class org.deeplearning4j.berkeley.Triple
 
getSigmoidLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getSortedKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
getSparsity() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getSparsity() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getSparsity() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getStepSize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getThird() - Method in class org.deeplearning4j.berkeley.Triple
 
getValue() - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.rbm.RBMOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.sda.DenoisingAutoEncoderOptimizer
 
getvBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getvBias() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getvBiasGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
getVisibleBiasTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getW() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getW() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getW() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getW() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getWeightTransforms() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getWeightTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getwGradient() - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
getwGradient() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
gibbhVh(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Gibbs sampling step: hidden ---> visible ---> hidden
gr(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is greater than b.
grow(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.LFWLoader
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.MnistFetcher
 

H

HardTanh - Class in org.deeplearning4j.nn.activation
 
HardTanh() - Constructor for class org.deeplearning4j.nn.activation.HardTanh
 
hashCode() - Method in class org.deeplearning4j.berkeley.Pair
 
hashCode() - Method in class org.deeplearning4j.berkeley.Triple
 
hashCode() - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
hashCode() - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
hasMore() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
hasNext() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns true if the priority queue is non-empty
hasNext() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
hBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
heapifyDown(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
heapifyUp(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
HiddenLayer - Class in org.deeplearning4j.nn
Vectorized Hidden Layer
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix, ActivationFunction) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix, ActivationFunction, RealDistribution) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix, RealDistribution) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer.Builder - Class in org.deeplearning4j.nn
 
HiddenLayer.Builder() - Constructor for class org.deeplearning4j.nn.HiddenLayer.Builder
 
hiddenLayerSizes - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
hiddenLayerSizes(int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
hypergeometric(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a hypergeometric distribution.
hypotenuse(double, double) - Static method in class org.deeplearning4j.util.MathUtils
sqrt(a^2 + b^2) without under/overflow.

I

idf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Inverse document frequency: the total docs divided by the number of times the word appeared in a document
ImageLoader - Class in org.deeplearning4j.util
 
ImageLoader() - Constructor for class org.deeplearning4j.util.ImageLoader
 
incrementAll(Collection<? extends E>, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment each element in a given collection by a given amount.
incrementAll(Counter<T>) - Method in class org.deeplearning4j.berkeley.Counter
 
incrementAll(Map<K, V>, double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementAll(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment a key's count by the given amount.
incrementCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Increments the count for a particular (key, value) pair.
incrementFalseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
 
incrementFalsePositives(int) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementTruePositives() - Method in class org.deeplearning4j.eval.Evaluation
 
information(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy for a given vector of probabilities.
init() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
initCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
Init clusters using the k-means++ algorithm.
initializeCurrFromList(List<Pair<DoubleMatrix, DoubleMatrix>>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
initializeLayers(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Base class for initializing the layers based on the input.
initializeNetwork(NeuralNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
initIfPossible(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
initWeights() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Initialize weights.
input - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
inputColumns - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
InputSplit - Class in org.deeplearning4j.util
 
InputSplit() - Constructor for class org.deeplearning4j.util.InputSplit
 
inputStreamFromPath(String) - Static method in class org.deeplearning4j.util.DeepLearningIOUtil
 
intersection(Collection<T>, Collection<T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intersectionP(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intPow(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(float, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(double, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
invert() - Method in class org.deeplearning4j.berkeley.CounterMap
Constructs reverse CounterMap where the count of a pair (k,v) is the count of (v,k) in the current CounterMap
iris() - Static method in class org.deeplearning4j.datasets.DataSets
 
iris(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
IrisDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
IrisDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
IrisDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
IrisDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator
 
IrisUtils - Class in org.deeplearning4j.base
 
IrisUtils() - Constructor for class org.deeplearning4j.base.IrisUtils
 
isConverged() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
isDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "dangerous" double to have around, namely one that is infinite, NaN or zero.
isDangerous(float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isDiscreteProb(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isEmpty() - Method in class org.deeplearning4j.berkeley.Counter
True if there are no entries in the counter (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.CounterMap
True if there are no entries in the CounterMap (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
isEmpty() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
True if the queue is empty (size == 0).
isEqualTo(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
isEqualTo(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
isForceNumEpochs() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isForceNumEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isGreater(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isInfinite(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
isNaN(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
isReady() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
isShouldBackProp() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isShouldBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isShouldInit() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isShouldInit() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isToDecode() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isToDecode() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseRegularization() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isUseRegularization() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseRegularization() - Method in class org.deeplearning4j.nn.LogisticRegression
 
isValidOutcome(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
isVeryDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "very dangerous" double to have around, namely one that is infinite or NaN.
iterator(int) - Method in class org.deeplearning4j.datasets.DataSet
 
iterator() - Method in class org.deeplearning4j.datasets.DataSet
 
Iterators - Class in org.deeplearning4j.berkeley
 
Iterators.FilteredIterator<T> - Class in org.deeplearning4j.berkeley
Creates an iterator that only returns items of a base iterator that pass a filter.
Iterators.FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
Iterators.FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
Iterators.IteratorIterator<T> - Class in org.deeplearning4j.berkeley
Wraps a two-level iteration scenario in an iterator.
Iterators.IteratorIterator(Iterator, Factory<Iterator<T>>) - Constructor for class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
Iterators.Transform<S,T> - Class in org.deeplearning4j.berkeley
Wraps a base iterator with a transformation function.
Iterators.Transform(Iterator<S>) - Constructor for class org.deeplearning4j.berkeley.Iterators.Transform
 
Iterators.TransformingIterator<I,O> - Class in org.deeplearning4j.berkeley
 
Iterators.TransformingIterator(Iterator<I>, MyMethod<I, O>) - Constructor for class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 

J

join(Iterable, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the Collection with the given glue.
join(List<?>, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the List with the given glue.
join(Object[], String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the array with the given glue.
join(List) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.
join(Object[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.
jostleWeighMatrix() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 

K

k - Variable in class org.deeplearning4j.rbm.RBMOptimizer
 
keepBottomNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keepTopNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keySet() - Method in class org.deeplearning4j.berkeley.Counter
The elements in the counter.
keySet() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the keys that have been inserted into this CounterMap.
KMeansClustering - Class in org.deeplearning4j.clustering
Shamelessly based on: https://github.com/pmerienne/trident-ml/blob/master/src/main/java/com/github/pmerienne/trident/ml/clustering/KMeans.java adapted to jblas double matrices
KMeansClustering(Integer, Class<? extends DistanceFunction>) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
KMeansClustering(Integer) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
kroneckerDelta(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the kronecker delta of two doubles.

L

l2 - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
l2 - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
l2RegularizedCoefficient() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
l2RegularizedCoefficient() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
lambert(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
layers - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
learningRateUpdate - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
leftChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
LFW - Static variable in class org.deeplearning4j.base.LFWLoader
 
lfw() - Static method in class org.deeplearning4j.datasets.DataSets
 
lfw(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
LFW_URL - Static variable in class org.deeplearning4j.base.LFWLoader
 
LFWDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the LFW faces dataset
LFWDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
LFWDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
LFWDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
LFWLoader - Class in org.deeplearning4j.base
 
LFWLoader() - Constructor for class org.deeplearning4j.base.LFWLoader
 
ListDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Wraps a data set collection
ListDataSetIterator(Collection<DataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
ListDataSetIterator(Collection<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
Initializes with a batch of 5
load(File) - Static method in class org.deeplearning4j.datasets.DataSet
 
load(InputStream) - Method in class org.deeplearning4j.datasets.DataSet
 
load(InputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Load (using ObjectInputStream
load(InputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Load (using ObjectInputStream
load(InputStream) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
load(InputStream) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
load(InputStream) - Method in interface org.deeplearning4j.nn.Persistable
 
LoadAndDraw - Class in org.deeplearning4j.datasets.mnist.draw
 
LoadAndDraw() - Constructor for class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
loadFromFile(InputStream) - Static method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Load (using ObjectInputStream
loadIris(int, int) - Static method in class org.deeplearning4j.base.IrisUtils
 
loadIris() - Static method in class org.deeplearning4j.base.IrisUtils
 
loadIris(int) - Static method in class org.deeplearning4j.base.IrisUtils
 
log - Static variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
log - Static variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
log(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
log2 - Static variable in class org.deeplearning4j.util.MathUtils
The natural logarithm of 2.
log2(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the logarithm of a for base 2.
logAdd(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(List<Double>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(Counter<T>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
LogisticRegression - Class in org.deeplearning4j.nn
Logistic regression implementation with jblas.
LogisticRegression(DoubleMatrix, DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression(DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression(int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression.Builder - Class in org.deeplearning4j.nn
 
LogisticRegression.Builder() - Constructor for class org.deeplearning4j.nn.LogisticRegression.Builder
 
LogisticRegressionGradient - Class in org.deeplearning4j.nn.gradient
 
LogisticRegressionGradient(DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
LogisticRegressionOptimizer - Class in org.deeplearning4j.optimize
 
LogisticRegressionOptimizer(LogisticRegression, double) - Constructor for class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
logLayer - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
logNormalize(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logs2probs(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities.
logSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
LOGTOLERANCE - Static variable in class org.deeplearning4j.berkeley.SloppyMath
If a difference is bigger than this in log terms, then the sum or difference of them will just be the larger (to 12 or so decimal places for double, and 7 or 8 for float).
LogTransform - Class in org.deeplearning4j.transformation
 
LogTransform() - Constructor for class org.deeplearning4j.transformation.LogTransform
 
longestCommonSubstring(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the longest common substring of s and t.
lookingAt(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found at the beginning of this String.
lossFunction(Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
lossFunction(Object[]) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
The loss function (cross entropy, reconstruction error,...)
lossFunction() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
lossFunction(Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
lr - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 

M

magnitude(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.Counter
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.CounterMap
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.PriorityQueue
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Tests the hypergeometric distribution code, or other functions provided in this module.
main(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
main(String[]) - Static method in class org.deeplearning4j.datasets.DataSet
 
main(String[]) - Static method in class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
main(String[]) - Static method in class org.deeplearning4j.eval.ConfusionMatrix
 
main(String[]) - Static method in class org.deeplearning4j.eval.DataSetTester
 
main(String[]) - Static method in class org.deeplearning4j.eval.ModelTester
 
main(String[]) - Static method in class org.deeplearning4j.util.MathUtils
 
makePair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
makeTriple(S, T, U) - Static method in class org.deeplearning4j.berkeley.Triple
 
ManhattanDistance - Class in org.deeplearning4j.distancefunction
 
ManhattanDistance(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.ManhattanDistance
 
manhattanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will calculate the Manhattan distance between two sets of points.
MapFactory<K,V> - Class in org.deeplearning4j.berkeley
The MapFactory is a mechanism for specifying what kind of map is to be used by some object.
MapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory
 
MapFactory.HashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.HashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
MapFactory.IdentityHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.IdentityHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
MapFactory.TreeMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.TreeMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
MapFactory.WeakHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.WeakHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
matches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression matches this String.
MathUtils - Class in org.deeplearning4j.util
This is a math utils class.
MathUtils() - Constructor for class org.deeplearning4j.util.MathUtils
 
MatrixTransform - Interface in org.deeplearning4j.transformation
 
MatrixUtil - Class in org.deeplearning4j.util
 
MatrixUtil() - Constructor for class org.deeplearning4j.util.MatrixUtil
 
max() - Method in class org.deeplearning4j.berkeley.Counter
 
max(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
max(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two float values.
max(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two double values.
max(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
max(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
maxIndex(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns index of maximum element in a given array of doubles.
maxIndex(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
maxLengthIterator(Iterator<T>, int) - Static method in class org.deeplearning4j.berkeley.Iterators
Provides a max number of elements for an underlying base iterator.
mean(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Computes the mean for an array of doubles.
mean(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
meanSquaredError(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Returns the mean squared error of the 2 matrices.
merge(List<DataSet>) - Static method in class org.deeplearning4j.datasets.DataSet
 
merge(BaseMultiLayerNetwork, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Merges this network with the other one.
merge(NeuralNetwork, int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
merge(LogisticRegression, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Averages the given logistic regression from a mini batch in to this one
merge(NeuralNetwork, int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
Performs a network merge in the form of a += b - a / n where a is a matrix here b is a matrix on the incoming network and n is the batch size
mergeCoords(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
mergeCoords(List<Double>, List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
min() - Method in class org.deeplearning4j.berkeley.Counter
 
min(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
min(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two float values.
min(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two double values.
min(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
min(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
minLearningRate - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
mnist() - Static method in class org.deeplearning4j.datasets.DataSets
 
mnist(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
MnistDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the MNIST dataset
MnistDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
MnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
 
MnistDbFile - Class in org.deeplearning4j.datasets.mnist
MNIST database file containing entries that can represent image or label data.
MnistDbFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistDbFile
Creates new instance and reads the header information.
MnistFetcher - Class in org.deeplearning4j.base
 
MnistFetcher() - Constructor for class org.deeplearning4j.base.MnistFetcher
 
MnistImageFile - Class in org.deeplearning4j.datasets.mnist
MNIST database image file.
MnistImageFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistImageFile
Creates new MNIST database image file ready for reading.
MnistLabelFile - Class in org.deeplearning4j.datasets.mnist
MNIST database label file.
MnistLabelFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistLabelFile
Creates new MNIST database label file ready for reading.
MnistManager - Class in org.deeplearning4j.datasets.mnist
Utility class for working with the MNIST database.
MnistManager(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistManager
Constructs an instance managing the two given data files.
ModelTester - Class in org.deeplearning4j.eval
 
ModelTester() - Constructor for class org.deeplearning4j.eval.ModelTester
 
momentum - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
momentum - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
MultiLayerGradient - Class in org.deeplearning4j.nn.gradient
Gradient for a whole multi layer network
MultiLayerGradient(List<NeuralNetworkGradient>, LogisticRegressionGradient) - Constructor for class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
MultiLayerNetworkOptimizer - Class in org.deeplearning4j.optimize
Optimizes the logistic layer for finetuning a multi layer network.
MultiLayerNetworkOptimizer(BaseMultiLayerNetwork, double) - Constructor for class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
Multiply - Class in org.deeplearning4j.transformation
 
Multiply() - Constructor for class org.deeplearning4j.transformation.Multiply
 
MultiplyScalar - Class in org.deeplearning4j.transformation
 
MultiplyScalar(double) - Constructor for class org.deeplearning4j.transformation.MultiplyScalar
 
MyMethod<I,O> - Interface in org.deeplearning4j.berkeley
A function wrapping interface.

N

nChooseK(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Computes n choose k in an efficient way.
nearestCentroid(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
negativeLoglikelihood(double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Negative log likelihood of the current input given the corruption level
negativeLogLikelihood() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Negative log likelihood of the model
negativeLogLikelihood() - Method in class org.deeplearning4j.nn.LogisticRegression
Objective function: minimize negative log likelihood
network - Variable in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
network - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
NeuralNetConfiguration - Class in org.deeplearning4j.conf
 
NeuralNetConfiguration() - Constructor for class org.deeplearning4j.conf.NeuralNetConfiguration
 
NeuralNetEpochListener - Interface in org.deeplearning4j.optimize
 
NeuralNetPlotter - Class in org.deeplearning4j.plot
Credit to : http://yosinski.com/media/papers/Yosinski2012VisuallyDebuggingRestrictedBoltzmannMachine.pdf for visualizations
NeuralNetPlotter() - Constructor for class org.deeplearning4j.plot.NeuralNetPlotter
 
NeuralNetwork - Interface in org.deeplearning4j.nn
 
NeuralNetworkGradient - Class in org.deeplearning4j.nn.gradient
Represents the gradient for changing a neural network
NeuralNetworkGradient(DoubleMatrix, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
NeuralNetworkOptimizer - Class in org.deeplearning4j.optimize
Performs basic beam search based on the network's loss function
NeuralNetworkOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
newInstance(Object...) - Method in class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
newInstance(Object...) - Method in interface org.deeplearning4j.berkeley.Factory
 
newIterable(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
newPair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
next() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
next() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the element in the queue with highest priority, and pops it from the queue.
next() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
next() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the next entry.
next() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
nextBoolean() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextBytes(byte[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextDouble() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextFloat() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextGaussian() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the next image.
nextInt() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextInt(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextList(List<Iterator<T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
nextLong() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nHidden - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
Number of hidden units One tip with this is usually having more hidden units than inputs (read: input rows here) will typically cause terrible overfitting.
nIn(int) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
nIns - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
nLayers - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
noNaNDivide(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
NonZeroStoppingConjugateGradient - Class in org.deeplearning4j.util
Modified based on cc.mallet.optimize.ConjugateGradient

no termination when zero tolerance

NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, double) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, NeuralNetEpochListener) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, double, NeuralNetEpochListener) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
normalize() - Method in class org.deeplearning4j.berkeley.Counter
Destructively normalize this Counter in place.
normalize() - Method in class org.deeplearning4j.berkeley.CounterMap
 
normalize(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Normalize a value (val - min) / (max - min)
normalize(double[], double) - Static method in class org.deeplearning4j.util.MathUtils
Normalizes the doubles in the array using the given value.
normalize(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeByColumnMeans(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Subtracts by column mean.
normalizeByColumnSums(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeByRowSums(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeToOne(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
normalizeWithDiscount(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
nOut(int) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
nOuts - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
nthIndex(String, char, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns the index of the nth occurrence of ch in s, or -1 if there are less than n occurrences of ch.
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
NUM_IMAGES - Static variable in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
numberOfInputs(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
numberOfInputs(int) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
numberOfOutPuts(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
numberOfOutputs(int) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
numberOfVisible(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
numExamples() - Method in class org.deeplearning4j.datasets.DataSet
 
numExamples - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
numHidden(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
numInputs() - Method in class org.deeplearning4j.datasets.DataSet
 
numOutcomes() - Method in class org.deeplearning4j.datasets.DataSet
 
numOutcomes - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
numTimesIterated - Variable in class org.deeplearning4j.rbm.RBMOptimizer
 
numtimesPredicted(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times a given label was predicted
numTimesPredicted(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Gets the number of times the given class was predicted for the given predicted label
nVisible - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 

O

objectIterator(ObjectInputStream) - Static method in class org.deeplearning4j.berkeley.Iterators
 
oneDiv(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
oneItemIterator(U) - Static method in class org.deeplearning4j.berkeley.Iterators
 
oneMinus(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
oneTailedFishersExact(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one-tailed Fisher's exact probability.
opt - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
optimize(DoubleMatrix, double, int) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
optimize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
optimize(int) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
optimizer - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
optimizer - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
optimizer - Variable in class org.deeplearning4j.rbm.RBM
 
org.deeplearning4j.autoencoder - package org.deeplearning4j.autoencoder
 
org.deeplearning4j.base - package org.deeplearning4j.base
 
org.deeplearning4j.berkeley - package org.deeplearning4j.berkeley
 
org.deeplearning4j.clustering - package org.deeplearning4j.clustering
 
org.deeplearning4j.conf - package org.deeplearning4j.conf
 
org.deeplearning4j.da - package org.deeplearning4j.da
 
org.deeplearning4j.datasets - package org.deeplearning4j.datasets
 
org.deeplearning4j.datasets.fetchers - package org.deeplearning4j.datasets.fetchers
 
org.deeplearning4j.datasets.iterator - package org.deeplearning4j.datasets.iterator
 
org.deeplearning4j.datasets.iterator.impl - package org.deeplearning4j.datasets.iterator.impl
 
org.deeplearning4j.datasets.mnist - package org.deeplearning4j.datasets.mnist
 
org.deeplearning4j.datasets.mnist.draw - package org.deeplearning4j.datasets.mnist.draw
 
org.deeplearning4j.dbn - package org.deeplearning4j.dbn
 
org.deeplearning4j.distancefunction - package org.deeplearning4j.distancefunction
 
org.deeplearning4j.eval - package org.deeplearning4j.eval
 
org.deeplearning4j.exception - package org.deeplearning4j.exception
 
org.deeplearning4j.nn - package org.deeplearning4j.nn
 
org.deeplearning4j.nn.activation - package org.deeplearning4j.nn.activation
 
org.deeplearning4j.nn.gradient - package org.deeplearning4j.nn.gradient
 
org.deeplearning4j.optimize - package org.deeplearning4j.optimize
 
org.deeplearning4j.plot - package org.deeplearning4j.plot
 
org.deeplearning4j.rbm - package org.deeplearning4j.rbm
 
org.deeplearning4j.rng - package org.deeplearning4j.rng
 
org.deeplearning4j.sda - package org.deeplearning4j.sda
 
org.deeplearning4j.test - package org.deeplearning4j.test
 
org.deeplearning4j.transformation - package org.deeplearning4j.transformation
 
org.deeplearning4j.util - package org.deeplearning4j.util
 
out(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
outcome() - Method in class org.deeplearning4j.datasets.DataSet
 
outcomeCounts() - Method in class org.deeplearning4j.datasets.DataSet
Gets the label distribution (counts of each possible outcome)
outcomes(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 

P

pad(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Return a String of length a minimum of totalChars characters by padding the input String str with spaces.
pad(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the toString value of the given Object.
padLeft(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the given String to the left with spaces to ensure that it's at least totalChars long.
padLeft(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(double, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padOrTrim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim so as to produce a string of exactly a certain length.
padOrTrim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim the toString value of the given Object.
Pair<F,S> - Class in org.deeplearning4j.berkeley
A generic-typed pair of objects.
Pair(F, S) - Constructor for class org.deeplearning4j.berkeley.Pair
 
Pair.DefaultLexicographicPairComparator<F extends Comparable<F>,S extends Comparable<S>> - Class in org.deeplearning4j.berkeley
 
Pair.DefaultLexicographicPairComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
Pair.FirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
 
Pair.LexicographicPairComparator<F,S> - Class in org.deeplearning4j.berkeley
 
Pair.LexicographicPairComparator(Comparator<F>, Comparator<S>) - Constructor for class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
Pair.ReverseFirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseFirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
Pair.ReverseSecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseSecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
Pair.SecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.SecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.SecondComparator
 
parent(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
parseCommandLineArguments(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
A simpler form of command line argument parsing.
partitionVariable(List<Double>, int) - Static method in class org.deeplearning4j.util.MathUtils
This will partition the given whole variable data set in to the specified chunk number.
peek() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
peek() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the highest-priority element in the queue, but does not pop it.
pennPOSToWordnetPOS(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the WordNet 2.0 POS tag corresponding to the PTB POS tag s.
permutation(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the permutation of n choose r.
Persistable - Interface in org.deeplearning4j.nn
 
plotActivations(NeuralNetwork) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotMatrices(String[], DoubleMatrix[]) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotNetworkGradient(NeuralNetwork, NeuralNetworkGradient) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotWeights(NeuralNetwork) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
PowScale - Class in org.deeplearning4j.transformation
 
PowScale(double) - Constructor for class org.deeplearning4j.transformation.PowScale
 
precision() - Method in class org.deeplearning4j.eval.Evaluation
 
precision(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the precision for a given label
predict(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Label the probabilities of the input
predict(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
Classify input
pretrain(DoubleMatrix, Object[]) - Method in class org.deeplearning4j.dbn.DBN
 
pretrain(DoubleMatrix, int, double, int) - Method in class org.deeplearning4j.dbn.DBN
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(int, double, int) - Method in class org.deeplearning4j.dbn.DBN
 
pretrain(DoubleMatrix, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Pretrain the network with the given parameters
pretrain(double, double, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
pretrain(DoubleMatrix, Object[]) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
pretrain(DoubleMatrix, double, double, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
Unsupervised pretraining based on reconstructing the input from a corrupted version
prev() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the previous entry.
prevImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the previous image.
printStringOneCharPerLine(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
printToFile(File, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(File, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
PriorityQueue<E> - Class in org.deeplearning4j.berkeley
A priority queue based on a binary heap.
PriorityQueue() - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueue(int) - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueueInterface<E> - Interface in org.deeplearning4j.berkeley
 
probRound(double, Random) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value in a probabilistic fashion (e.g.
probToLogOdds(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the log-odds for a given probability.
propDown(DoubleMatrix) - Method in class org.deeplearning4j.rbm.CRBM
 
propDown(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Propagates hidden down to visible
propUp(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
 
pruneKeysBelowThreshold(double) - Method in class org.deeplearning4j.berkeley.Counter
 
put(E, double, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key if it is larger than the previous one;
put(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
put(E, double) - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Adds a key to the queue with the given priority.

R

randomDoubleBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
randomNumberBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
RBM - Class in org.deeplearning4j.rbm
Restricted Boltzmann Machine.
RBM() - Constructor for class org.deeplearning4j.rbm.RBM
 
RBM(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.RBM
 
RBM.Builder - Class in org.deeplearning4j.rbm
 
RBM.Builder() - Constructor for class org.deeplearning4j.rbm.RBM.Builder
 
RBMOptimizer - Class in org.deeplearning4j.rbm
 
RBMOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.rbm.RBMOptimizer
 
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Reads the image at the current position.
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current image.
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
Reads the integer at the current position.
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current label.
readObject(File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
readObject(InputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Reads an object from the given input stream
readString(DataInputStream, int) - Static method in class org.deeplearning4j.util.ByteUtil
 
recall() - Method in class org.deeplearning4j.eval.Evaluation
Returns the recall for the outcomes
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
reconstruct(DoubleMatrix, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Reconstructs the input.
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
All neural networks are based on this idea of minimizing reconstruction error.
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Reconstructs the visible input.
relativeDifferance(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
remove() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
remove() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Not supported -- next() already removes the head of the queue.
remove() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
remove() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
removeFirst() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
removeKey(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removeKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
removeKeyFromEntries(E) - Method in class org.deeplearning4j.berkeley.Counter
 
renderActivations(int, int, DoubleMatrix, String, int) - Method in class org.deeplearning4j.plot.FilterRenderer
 
renderAllHistograms(NeuralNetwork) - Method in class org.deeplearning4j.plot.FilterRenderer
Figure 2.
renderFilter(DoubleMatrix, int, int, long) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
renderFilters(DoubleMatrix, String, int, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Once the probability image and weight histograms are behaving satisfactorily, we plot the learned filter for each hidden neuron, one per column of W.
renderHiddenBiases(int, int, DoubleMatrix, String) - Method in class org.deeplearning4j.plot.FilterRenderer
 
renderHistogram(DoubleMatrix, String, int) - Method in class org.deeplearning4j.plot.FilterRenderer
Groups values into 1 of 10 bins, sums, and renders NOTE: this is "render histogram BS code"; - I'm not exactly concerned with how pretty it is.
renderWeights(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Whether to plot weights or not
renderWeights(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
renderWeightsEveryNEpochs - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
renderWeightsEveryNumEpochs - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
reset() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
reset() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
reset() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
reverse() - Method in class org.deeplearning4j.berkeley.Pair
 
rightChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
rng - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
rng - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
rootMeansSquaredError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the root mean squared error of two data sets
round(double, int, int) - Static method in class org.deeplearning4j.plot.FilterRenderer
 
round(double) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value.
roundDouble(double, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.
roundToTheNearest(int) - Method in class org.deeplearning4j.datasets.DataSet
 
roundToTheNearest(DoubleMatrix, double) - Static method in class org.deeplearning4j.util.MatrixUtil
 
run() - Method in class org.deeplearning4j.eval.DataSetTester
 

S

sample(Random) - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample() - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample(int) - Method in class org.deeplearning4j.datasets.DataSet
Sample without replacement and a random rng
sample(int, RandomGenerator) - Method in class org.deeplearning4j.datasets.DataSet
Sample without replacement
sample(int, boolean) - Method in class org.deeplearning4j.datasets.DataSet
Sample a dataset numSamples times
sample(int, RandomGenerator, boolean) - Method in class org.deeplearning4j.datasets.DataSet
Sample a dataset
sample_h_given_v() - Method in class org.deeplearning4j.nn.HiddenLayer
Sample this hidden layer given the last input.
sampleDoublesInInterval(double[][], int) - Static method in class org.deeplearning4j.util.MathUtils
 
sampleHGivenV(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
Sample this hidden layer given the input and initialize this layer with the given input
sampleHiddenGivenVisible(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Binomial sampling of the hidden values given visible
sampleVGivenH(DoubleMatrix) - Method in class org.deeplearning4j.rbm.CRBM
 
sampleVGivenH(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Guess the visible values given the hidden
saveImageToDisk(BufferedImage, String) - Static method in class org.deeplearning4j.plot.FilterRenderer
 
saveObject(Object, File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
saveTo(File, boolean) - Method in class org.deeplearning4j.datasets.DataSet
 
saveToDisk(String) - Method in class org.deeplearning4j.plot.FilterRenderer
 
ScalarMatrixTransform - Class in org.deeplearning4j.transformation
 
ScalarMatrixTransform(double) - Constructor for class org.deeplearning4j.transformation.ScalarMatrixTransform
 
scale(double) - Method in class org.deeplearning4j.berkeley.Counter
 
scale(double) - Method in class org.deeplearning4j.berkeley.CounterMap
Scale all entries in CounterMap by scaleFactor
scaleBy - Variable in class org.deeplearning4j.transformation.ScalarMatrixTransform
 
scaledClone(double) - Method in class org.deeplearning4j.berkeley.Counter
 
SerializationUtils - Class in org.deeplearning4j.util
 
SerializationUtils() - Constructor for class org.deeplearning4j.util.SerializationUtils
 
setActivation(ActivationFunction) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setActivationFunction(ActivationFunction) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setAllCounts(double) - Method in class org.deeplearning4j.berkeley.Counter
Sets all counts to the given value, but does not remove any keys
setB(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setB(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setbGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
setColumnMeans(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setColumnStds(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setColumnSums(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key, clobbering any previous count.
setCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Sets the count for a particular (key, value) pair.
setCounter(K, Counter<V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setCurrent(int) - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Set the position to be read.
setCurrentIndex(long) - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Set the required current entry index.
setDefault(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setDeflt(double) - Method in class org.deeplearning4j.berkeley.Counter
 
setDirty(boolean) - Method in class org.deeplearning4j.berkeley.Counter
 
setDist(RealDistribution) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setDist(RealDistribution) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setErrorTolerance(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setEvaluator(OptimizerEvaluator.ByGradient) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setFanIn(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setFanIn(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setFanIn(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setFanIn(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setFirst(F) - Method in class org.deeplearning4j.berkeley.Pair
 
setFirst(S) - Method in class org.deeplearning4j.berkeley.Triple
 
setForceNumEpochs(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setForceNumEpochs(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setGradients(List<NeuralNetworkGradient>) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
sethBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
sethBias(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
sethBiasGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
setHiddenLayerSizes(int[]) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setHiddenLayerSizes(int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setInitialStepSize(double) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Note that if input isn't null and the layers are null, this is a way of initializing the neural network
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setInput(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setL2(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setL2(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setL2(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setL2(double) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setL2(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setLayers(NeuralNetwork[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLearningRateUpdate(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLineMaximizer(LineOptimizer.ByGradient) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setLogLayer(LogisticRegression) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setLogLayer(LogisticRegression) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLogRegGradient(LogisticRegressionGradient) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
setMaxCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the maximum of the current count and val.
setMaxIterations(int) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setMinCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the minimum of the current count and val.
setMomentum(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setMomentum(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setMomentum(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setMomentum(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setnHidden(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setnHidden(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setnIn(int) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setnIn(int) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setnIns(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnIns(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnLayers(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnOut(int) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setnOut(int) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setnOuts(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnOuts(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnVisible(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setnVisible(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setOptimizer(MultiLayerNetworkOptimizer) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setOptimizer(MultiLayerNetworkOptimizer) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
setRenderEpochs(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setRenderEpochs(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setRenderWeightsEveryNEpochs(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setRenderWeightsEveryNEpochs(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setRng(RandomGenerator) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setSecond(S) - Method in class org.deeplearning4j.berkeley.Pair
 
setSecond(T) - Method in class org.deeplearning4j.berkeley.Triple
 
setSeed(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(int[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(long) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setShouldBackProp(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setShouldBackProp(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setShouldInit(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setShouldInit(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSigmoidLayers(HiddenLayer[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSparsity(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSparsity(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setSparsity(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setThird(U) - Method in class org.deeplearning4j.berkeley.Triple
 
setToDecode(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setToDecode(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setTolerance(double) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.nn.LogisticRegression
 
SetUtils - Class in org.deeplearning4j.util
 
setvBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setvBias(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setvBiasGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setW(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setWeightTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setWeightTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setwGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.gradient.LogisticRegressionGradient
 
setwGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
shouldBackProp - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
shouldForceEpochs - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
shouldInit - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
shuffle() - Method in class org.deeplearning4j.datasets.DataSet
 
Sigmoid - Class in org.deeplearning4j.nn.activation
 
Sigmoid() - Constructor for class org.deeplearning4j.nn.activation.Sigmoid
 
sigmoid(double) - Static method in class org.deeplearning4j.util.MathUtils
1 / 1 + exp(-x)
sigmoid(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
size() - Method in class org.deeplearning4j.berkeley.Counter
The number of entries in the counter (not the total count -- use totalCount() instead).
size() - Method in class org.deeplearning4j.berkeley.CounterMap
The number of keys in this CounterMap (not the number of key-value entries -- use totalSize() for that)
size() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
size() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Number of elements in the queue.
slope(double, double, double, double) - Method in class org.deeplearning4j.util.MathUtils
This returns the slope of the given points.
SloppyMath - Class in org.deeplearning4j.berkeley
The class SloppyMath contains methods for performing basic numeric operations.
SloppyMath() - Constructor for class org.deeplearning4j.berkeley.SloppyMath
 
slurpFile(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file
slurpFileNoExceptions(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFileNoExceptions(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpGBFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpGBURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpReader(Reader) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text from the given Reader.
slurpURL(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
sm(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is smaller than b.
SMALL - Static variable in class org.deeplearning4j.util.MathUtils
The small deviation allowed in double comparisons.
softmax(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
sortAndBatchByNumLabels() - Method in class org.deeplearning4j.datasets.DataSet
Sorts the dataset by label: Splits the data set such that examples are sorted by their labels.
sortByLabel() - Method in class org.deeplearning4j.datasets.DataSet
Organizes the dataset to minimize sampling error while still allowing efficient batching.
sparsity - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
split(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits on whitespace (\\s+).
split(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits the given string using the given regex as delimiters.
splitInputs(DoubleMatrix, DoubleMatrix, List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitInputs(List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitOnCharWithQuoting(String, char, char, char) - Static method in class org.deeplearning4j.berkeley.StringUtils
This function splits the String s into multiple Strings using the splitChar.
splitTestAndTrain(int) - Method in class org.deeplearning4j.datasets.DataSet
 
SqrtScalar - Class in org.deeplearning4j.transformation
 
SqrtScalar() - Constructor for class org.deeplearning4j.transformation.SqrtScalar
 
squaredLoss() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
squaredLoss() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
squaredLoss(double[], double[], double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the squared loss of the given points
ssError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is NOT explained by the regression
ssReg(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is explained by the regression
ssTotal(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Total variance in target attribute
StackedDenoisingAutoEncoder - Class in org.deeplearning4j.sda
A JBlas implementation of stacked denoising auto encoders.
StackedDenoisingAutoEncoder() - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder.Builder - Class in org.deeplearning4j.sda
 
StackedDenoisingAutoEncoder.Builder() - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder.Builder
 
start() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
start() - Method in class org.deeplearning4j.plot.FilterRenderer
 
stats() - Method in class org.deeplearning4j.eval.Evaluation
 
stringSimilarity(String...) - Static method in class org.deeplearning4j.util.MathUtils
Calculate string similarity with tfidf weights relative to each character frequency and how many times a character appears in a given string
stringToProperties(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
This method converts a comma-separated String (with whitespace optionally allowed after the comma) representing properties to a Properties object.
StringUtils - Class in org.deeplearning4j.berkeley
StringUtils is a class for random String things.
stripNonAlphaNumerics(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
Subtract - Class in org.deeplearning4j.transformation
 
Subtract() - Constructor for class org.deeplearning4j.transformation.Subtract
 
SubtractScalar - Class in org.deeplearning4j.transformation
 
SubtractScalar(double) - Constructor for class org.deeplearning4j.transformation.SubtractScalar
 
sum(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of the given array.
sum(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
sumOfMeanDifferences(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfMeanDifferencesOnePoint(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfProducts(double[]...) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of products for the given numbers.
sumOfSquares(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of squares for the given vector.
sumSquaredError(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Returns the sum squared error of the 2 matrices.
swap(int, int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
SynchronizedRandomGenerator - Class in org.deeplearning4j.rng
Any RandomGenerator implementation can be thread-safe if it is used through an instance of this class.
SynchronizedRandomGenerator(RandomGenerator) - Constructor for class org.deeplearning4j.rng.SynchronizedRandomGenerator
Creates a synchronized wrapper for the given RandomGenerator instance.

T

Tanh - Class in org.deeplearning4j.nn.activation
 
Tanh() - Constructor for class org.deeplearning4j.nn.activation.Tanh
 
TestDataSetIterator - Class in org.deeplearning4j.test
Track number of times the dataset iterator has been called
TestDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.test.TestDataSetIterator
 
tf(int) - Static method in class org.deeplearning4j.util.MathUtils
Term frequency: 1+ log10(count)
tfidf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Return td * idf
thread(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Executes calls to next() in a different thread
times(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the product of all numbers in the given array.
title - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
title - Variable in class org.deeplearning4j.plot.FilterRenderer
 
toCSV() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
toDecimal(String) - Static method in class org.deeplearning4j.util.MathUtils
This will convert the given binary string to a decimal based integer
toDecode - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
toDouble(int[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
toHTML() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs Confusion Matrix in an HTML table.
tolerance - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
toLogSpace() - Method in class org.deeplearning4j.berkeley.Counter
 
toMatrix(int[][]) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toMatrix(int[]) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toOutcomeArray(int, int) - Static method in class org.deeplearning4j.util.ArrayUtil
 
toOutcomeVector(int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toString() - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation with the keys ordered by decreasing counts.
toString(int) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts and optionally prints one element per line.
toString(int) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString(Collection<String>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.Pair
 
toString() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order, displaying at most maxKeysToPrint elements and optionally printing one element per line.
toString() - Method in class org.deeplearning4j.berkeley.Triple
 
toString() - Method in class org.deeplearning4j.datasets.DataSet
 
toString() - Method in class org.deeplearning4j.eval.ConfusionMatrix
 
toStringSortedByKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
toStringTabSeparated() - Method in class org.deeplearning4j.berkeley.Counter
 
totalCount() - Method in class org.deeplearning4j.berkeley.Counter
Finds the total of all counts in the counter.
totalCount() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total of all counts in sub-counters.
totalExamples - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.test.TestDataSetIterator
 
totalSize() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total number of (key, value) entries in the CounterMap (not their total counts).
train(DoubleMatrix, DoubleMatrix, double) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
train(DoubleMatrix, double, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Perform one iteration of training
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Train one iteration of the network
train(double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train with current input and labels with the given learning rate
train(DoubleMatrix, double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train with the given input and the currently set labels
train(DoubleMatrix, DoubleMatrix, double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train on the given inputs and labels.
train(DoubleMatrix, double, Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
train(DoubleMatrix) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
trainingFileLabelsFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainingFilesFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.dbn.DBN
 
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Train the network running some unsupervised pretraining followed by SGD/finetune
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
trainTillConvergence(DoubleMatrix, double, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Run a network optimizer
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
trainTillConvergence(DoubleMatrix, DoubleMatrix, double, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Run conjugate gradient with the given x and y
trainTillConvergence(double, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Run conjugate gradient
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
trainTillConvergence(double, int, DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Trains till global minimum is found.
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.rbm.RBM
Note: k is the first input in params.
transform(S) - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
A map of transformations for transforming the given layers
transpose() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
transpose() - Method in class org.deeplearning4j.nn.HiddenLayer
 
transpose() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
trim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns s if it's at most maxWidth chars, otherwise chops right side to fit.
trim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
Triple<S,T,U> - Class in org.deeplearning4j.berkeley
 
Triple(S, T, U) - Constructor for class org.deeplearning4j.berkeley.Triple
 
truncate(int, int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
This returns a string from decimal digit smallestDigit to decimal digit biggest digit.

U

uniform(Random, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generate a uniform random number from the given rng
uniform(RandomGenerator, int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
union(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
unitVec(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
unroll(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
unsafeAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
unsafeSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
untarFile(File, File) - Method in class org.deeplearning4j.base.LFWLoader
 
untarFile(File, File) - Method in class org.deeplearning4j.base.MnistFetcher
 
update(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
update(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Assigns the parameters of this model to the ones specified by this network.
update(BaseNeuralNetwork) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Copies params from the passed in network to this one
useRegularization - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
useRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Use l2 reg
useRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
useRegularization - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
useRegularization(boolean) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 

V

validate() - Method in class org.deeplearning4j.datasets.DataSet
 
vBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
vectorLength(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the vector length (sqrt(sum(x_i))

W

W - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
w_0(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
w_1(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
weightsFor(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightsFor(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightTransforms - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
weightTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Pick an activation function, default is sigmoid
withActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withClazz(Class<? extends BaseNeuralNetwork>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Probability distribution for generating weights
withDistribution(RealDistribution) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withFanIn(Double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withHBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withHiddenBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withL2(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
L2 coefficient
withL2(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withL2(double) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
withLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withMomentum(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Specify momentum
withMomentum(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withRandom(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withRng(RandomGenerator) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withSparsity(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withSparsity(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withVisibleBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withVisibleBiasTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
write(OutputStream) - Method in class org.deeplearning4j.datasets.DataSet
 
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Serializes this to the output stream.
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Write this to an object output stream
write(OutputStream) - Method in class org.deeplearning4j.nn.gradient.MultiLayerGradient
 
write(OutputStream) - Method in class org.deeplearning4j.nn.gradient.NeuralNetworkGradient
 
write(OutputStream) - Method in interface org.deeplearning4j.nn.Persistable
 
writeImageToPpm(int[][], String) - Static method in class org.deeplearning4j.datasets.mnist.MnistManager
Writes the given image in the given file using the PPM data format.
writeMatrix(DoubleMatrix) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
writeObject(Serializable, OutputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Writes the object to the output stream THIS DOES NOT FLUSH THE STREAM

X

xorData(int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
xorData(int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
xVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the x values of the given vector.

Y

yVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the odd indexed values for the given vector

Z

zip(Iterator<S>, Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
A B C D E F G H I J K L M N O P R S T U V W X Y Z 

Copyright © 2014. All Rights Reserved.