Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A

able(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
abs(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
accept(T) - Method in interface org.deeplearning4j.berkeley.Filter
 
accumulateScore(double) - Method in interface org.deeplearning4j.nn.api.Model
Sets a rolling tally for the score.
accumulateScore(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
accumulateScore(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
accumulateScore(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
accuracy() - Method in class org.deeplearning4j.eval.Evaluation
Accuracy: (TP + TN) / (P + N)
activate(Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
Trigger an activation with the last specified input
activate(INDArray, Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
Initialize the layer with the given input and return the activation for this layer given this input
activate(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
Trigger an activation with the last specified input
activate(INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Layer
Initialize the layer with the given input and return the activation for this layer given this input
activate() - Method in interface org.deeplearning4j.nn.api.Layer
Trigger an activation with the last specified input
activate(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Initialize the layer with the given input and return the activation for this layer given this input
activate(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
activate() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
activate() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Reconstructs the visible INPUT.
activate(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
activate() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
activate() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
activate() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
activate() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Triggers the activation of the last hidden layer ie: not logistic regression
activate(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Triggers the activation for a given layer
activate(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
activate(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Triggers the activation of the given layer
activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
activate(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
activateHelper(Layer, NeuralNetConfiguration, INDArray, INDArray, INDArray, INDArray, boolean, INDArray, INDArray, boolean, boolean, String) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
Returns FwdPassReturn object with activations/INDArrays.
activateSelectedLayers(int, int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate activation for few layers at once.
activation(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Layer activation function.
activation(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Activation function / neuron non-linearity Typical values include:
"relu" (rectified linear), "tanh", "sigmoid", "softmax", "hardtanh", "leakyrelu", "maxout", "softsign", "softplus"
activationFromPrevLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate activation from previous layer including pre processing where necessary
activationFunction - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
activationFunction - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
activationFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
ActivationLayer - Class in org.deeplearning4j.nn.conf.layers
 
ActivationLayer - Class in org.deeplearning4j.nn.layers
Activation Layer Used to apply activation on input and corresponding derivative on epsilon.
ActivationLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.ActivationLayer
 
ActivationLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.ActivationLayer
 
ActivationLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
activationMean() - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the mean representation for the activation for this layer
activationMean() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
activationMean() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
activationMean() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
ActivationMeanIterationListener - Class in org.deeplearning4j.plot.iterationlistener
 
ActivationMeanIterationListener(int) - Constructor for class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
AdaDeltaAggregator() - Constructor for class org.deeplearning4j.nn.updater.AdaDeltaUpdater.AdaDeltaAggregator
 
AdaDeltaUpdater - Class in org.deeplearning4j.nn.updater
 
AdaDeltaUpdater() - Constructor for class org.deeplearning4j.nn.updater.AdaDeltaUpdater
 
AdaDeltaUpdater.AdaDeltaAggregator - Class in org.deeplearning4j.nn.updater
 
adaGrad - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
adaGrad - Variable in class org.deeplearning4j.plot.Tsne
 
AdaGradAggregator() - Constructor for class org.deeplearning4j.nn.updater.AdaGradUpdater.AdaGradAggregator
 
AdaGradUpdater - Class in org.deeplearning4j.nn.updater
Ada grad updater
AdaGradUpdater() - Constructor for class org.deeplearning4j.nn.updater.AdaGradUpdater
 
AdaGradUpdater.AdaGradAggregator - Class in org.deeplearning4j.nn.updater
 
AdamAggregator() - Constructor for class org.deeplearning4j.nn.updater.AdamUpdater.AdamAggregator
 
adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
adamMeanDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Mean decay rate for Adam updater.
adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
adamMeanDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Mean decay rate for Adam updater.
AdamUpdater - Class in org.deeplearning4j.nn.updater
 
AdamUpdater() - Constructor for class org.deeplearning4j.nn.updater.AdamUpdater
 
AdamUpdater.AdamAggregator - Class in org.deeplearning4j.nn.updater
 
adamVarDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
adamVarDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
adamVarDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Variance decay rate for Adam updater.
adamVarDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
adamVarDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Variance decay rate for Adam updater.
add(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
add(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by one.
add(T, T, int) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by count.
add(ConfusionMatrix<T>) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Adds the entries from another confusion matrix to this one.
add(E) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
add(Object, int) - Method in class org.deeplearning4j.util.Index
 
add(Object) - Method in class org.deeplearning4j.util.Index
 
add(Pair<K, V>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Adds the specified element to this applyTransformToDestination if it is not already present (optional operation).
add(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
 
addAll(Collection<? extends E>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
addAll(Collection<? extends Pair<K, V>>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Adds all of the elements in the specified collection to this applyTransformToDestination if they're not already present (optional operation).
addClusterInfo(String) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
addColumn(List<String>) - Method in class org.deeplearning4j.util.StringGrid
 
addExp(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
addExp_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Similar to logAdd, but without the final log.
addInput(String) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Set as an input, the entire contents (all columns) of the RecordReader or SequenceRecordReader
addInput(String, int, int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Set as an input, a subset of the specified RecordReader or SequenceRecordReader
addInputOneHot(String, int, int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Add as an input a single column from the specified RecordReader / SequenceRecordReader The assumption is that the specified column contains integer values in range 0..numClasses-1; this integer will be converted to a one-hot representation
addInputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Specify the inputs to the network, and their associated labels.
addLayer(String, Layer, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Add a layer, with no InputPreProcessor, with the specified name and specified inputs.
addLayer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Add a layer and an InputPreProcessor, with the specified name and specified inputs.
addNewClusterWithCenter(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
addOutput(String) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Set as an output, the entire contents (all columns) of the RecordReader or SequenceRecordReader
addOutput(String, int, int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Add an output, with a subset of the columns from the named RecordReader or SequenceRecordReader
addOutputOneHot(String, int, int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
An an output, where the output is taken from a single column from the specified RecordReader / SequenceRecordReader The assumption is that the specified column contains integer values in range 0..numClasses-1; this integer will be converted to a one-hot representation (usually for classification)
addPoint(Point) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
addPoint(Point, boolean) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
addPreProcessors(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Add preprocessors automatically, given the specified types of inputs for the network.
addReader(String, RecordReader) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Add a RecordReader for use in .addInput(...) or .addOutput(...)
addRow(List<String>) - Method in class org.deeplearning4j.util.StringGrid
 
addSequenceReader(String, SequenceRecordReader) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Add a SequenceRecordReader for use in .addInput(...) or .addOutput(...)
addToConfusion(Integer, Integer) - Method in class org.deeplearning4j.eval.Evaluation
Adds to the confusion matrix
addVariable(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
addVertex(String, GraphVertex, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Add a GraphVertex to the network configuration.
adjustedrSquared(double, int, int) - Static method in class org.deeplearning4j.util.MathUtils
This calculates the adjusted r^2 including degrees of freedom.
aggregate(Updater) - Method in interface org.deeplearning4j.nn.updater.aggregate.UpdaterAggregator
 
aggregate(Updater) - Method in class org.deeplearning4j.nn.updater.BaseUpdater.UpdaterAggregatorImpl
 
aggregate(ComputationGraphUpdater) - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater.Aggregator
Add another ComputationGraphUpdater to this aggregator
aggregate(Updater) - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater.MultiLayerUpdaterAggregator
 
Aggregator() - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater.Aggregator
 
aggregatorMap - Variable in class org.deeplearning4j.nn.updater.BaseUpdater.UpdaterAggregatorImpl
 
ALF - Variable in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
allMatches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
allowEmptyClusters - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
alpha - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
alpha(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
ancestor(int, Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns the ancestor of the given tree
appendTo(String, File) - Static method in class org.deeplearning4j.util.FileOperations
 
appendToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
applyClusteringStrategy() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
applyDropConnect(Layer, String) - Static method in class org.deeplearning4j.util.Dropout
Apply drop connect to the given variable
applyDropout(INDArray, double, INDArray) - Static method in class org.deeplearning4j.util.Dropout
Apply dropout to the given input and return the drop out mask used
applyDropOutIfNecessary(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
applyDropOutIfNecessary(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
 
applyLearningRateScoreDecay() - Method in interface org.deeplearning4j.nn.api.Model
Update learningRate using for this model.
applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
applyLearningRateScoreDecay() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
applyLrDecayPolicy(LearningRatePolicy, Layer, int, String) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
Update learning rate based on policy
applyMomentumDecayPolicy(Layer, int, String) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
Update momentum if schedule exist
applyOptimization(OptimisationStrategy, ClusterSet, ClusterSetInfo, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
applyTo(List<Point>) - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
applyTo(List<Point>) - Method in interface org.deeplearning4j.clustering.algorithm.ClusteringAlgorithm
 
approxEquals(Counter<E>, double) - Method in class org.deeplearning4j.berkeley.Counter
 
approxExp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxLog(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
approxPow(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
ArchiveUtils - Class in org.deeplearning4j.util
 
ArchiveUtils() - Constructor for class org.deeplearning4j.util.ArchiveUtils
 
argMax() - Method in class org.deeplearning4j.berkeley.Counter
Finds the key with maximum count.
argMax() - Method in class org.deeplearning4j.berkeley.CounterMap
Finds the key with maximum count.
argsToMap(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToMap(String[], Map<String, Integer>) - Static method in class org.deeplearning4j.berkeley.StringUtils
Parses command line arguments into a Map.
argsToProperties(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
argsToProperties(String[], Map) - Static method in class org.deeplearning4j.berkeley.StringUtils
arrayToString(String[]) - Static method in class org.deeplearning4j.util.StringUtils
Given an array of strings, return a comma-separated list of its elements.
asciify(String) - Method in class org.deeplearning4j.util.FingerPrintKeyer
 
asCounter() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a counter whose keys are the elements in this priority queue, and whose counts are the priorities in this queue.
asImageMiniBatches(File, int, int) - Method in class org.deeplearning4j.util.ImageLoader
Deprecated.
Slices up an image in to a mini batch.
asMatrix(File) - Method in class org.deeplearning4j.util.ImageLoader
Deprecated.
 
asMinPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Warning: all priorities are the negative of their counts in the counter here
asPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Builds a priority queue whose elements are the counter's elements, and whose priorities are those elements' counts in the counter.
asRowVector(File) - Method in class org.deeplearning4j.util.ImageLoader
Deprecated.
 
AsyncDataSetIterator - Class in org.deeplearning4j.datasets.iterator
AsyncDataSetIterator takes an existing DataSetIterator and loads one or more DataSet objects from it using a separate thread.
AsyncDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
Create an AsyncDataSetIterator with a queue size of 1 (i.e., only load a single additional DataSet)
AsyncDataSetIterator(DataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
Create an AsyncDataSetIterator with a specified queue size.
AutoEncoder - Class in org.deeplearning4j.nn.conf.layers
Autoencoder.
AutoEncoder - Class in org.deeplearning4j.nn.layers.feedforward.autoencoder
Autoencoder.
AutoEncoder(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
AutoEncoder(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
AutoEncoder.Builder - Class in org.deeplearning4j.nn.conf.layers
 

B

backprop - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
backprop - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
backprop(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Whether to do back prop (standard supervised learning) or not
backprop(INDArray, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
Reverse the preProcess during backprop.
backprop - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
backprop - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
backprop(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Whether to do back prop or not
backprop(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
 
backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
 
backprop(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Do backprop (gradient calculation)
backprop() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate and set gradients for MultiLayerNetwork, based on OutputLayer and labels
backpropGradient(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the gradient relative to the error in the next layer
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
backpropGradientHelper(NeuralNetConfiguration, INDArray, INDArray, INDArray, INDArray, boolean, int, FwdPassReturn, boolean, String, String, String, Map<String, INDArray>) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
 
BackpropType - Enum in org.deeplearning4j.nn.conf
Defines the type of backpropagation.
backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
The type of backprop.
backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
The type of backprop.
BackTrackLineSearch - Class in org.deeplearning4j.optimize.solvers
 
BackTrackLineSearch(Model, StepFunction, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
BackTrackLineSearch(Model, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
BarnesHutTsne - Class in org.deeplearning4j.plot
Barnes hut algorithm for TSNE, uses a dual tree approximation approach.
BarnesHutTsne(INDArray, INDArray, int, double, double, int, int, int, double, double, double) - Constructor for class org.deeplearning4j.plot.BarnesHutTsne
 
BarnesHutTsne(INDArray, INDArray, int, String, double, boolean, int, double, double, double, double, int, boolean, boolean, int, double, double, boolean, double, double) - Constructor for class org.deeplearning4j.plot.BarnesHutTsne
 
BarnesHutTsne.Builder - Class in org.deeplearning4j.plot
 
BASE_DIR - Variable in class org.deeplearning4j.base.MnistFetcher
 
BaseClusteringAlgorithm - Class in org.deeplearning4j.clustering.algorithm
adapted to ndarray matrices
BaseClusteringAlgorithm(ClusteringStrategy) - Constructor for class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
BaseClusteringStrategy - Class in org.deeplearning4j.clustering.algorithm.strategy
 
BaseClusteringStrategy(ClusteringStrategyType, Integer, String, boolean) - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
BaseDataFetcher - Class in org.deeplearning4j.datasets.fetchers
A base class for assisting with creation of matrices with the data applyTransformToDestination fetcher
BaseDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
BaseDatasetIterator - Class in org.deeplearning4j.datasets.iterator
Baseline implementation includes control over the data fetcher and some basic getters for metadata
BaseDatasetIterator(int, int, BaseDataFetcher) - Constructor for class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
BaseEarlyStoppingTrainer<T extends Model> - Class in org.deeplearning4j.earlystopping.trainer
Base/abstract class for conducting early stopping training locally (single machine).
Can be used to train a MultiLayerNetwork or a ComputationGraph via early stopping
BaseEarlyStoppingTrainer(EarlyStoppingConfiguration<T>, T, DataSetIterator, MultiDataSetIterator, EarlyStoppingListener<T>) - Constructor for class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
BaseGraphVertex - Class in org.deeplearning4j.nn.graph.vertex
BaseGraphVertex defines a set of common functionality for GraphVertex instances.
BaseGraphVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
BaseInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
 
BaseInputPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
 
BaseLayer<LayerConfT extends Layer> - Class in org.deeplearning4j.nn.layers
A layer with a bias and activation function
BaseLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
 
BaseLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
 
BaseOptimizer - Class in org.deeplearning4j.optimize.solvers
Base optimizer
BaseOptimizer(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
BaseOptimizer(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
BaseOutputLayer - Class in org.deeplearning4j.nn.conf.layers
 
BaseOutputLayer(BaseOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
 
BaseOutputLayer<LayerConfT extends BaseOutputLayer> - Class in org.deeplearning4j.nn.layers
Output layer with different objective incooccurrences for different objectives.
BaseOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BaseOutputLayer
 
BaseOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BaseOutputLayer
 
BaseOutputLayer.Builder<T extends BaseOutputLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
BasePretrainNetwork - Class in org.deeplearning4j.nn.conf.layers
 
BasePretrainNetwork(BasePretrainNetwork.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
 
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> - Class in org.deeplearning4j.nn.layers
Baseline class for any Neural Network used as a layer in a deep network *
BasePretrainNetwork(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
BasePretrainNetwork(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
BasePretrainNetwork.Builder<T extends BasePretrainNetwork.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
BaseRecurrentLayer - Class in org.deeplearning4j.nn.conf.layers
 
BaseRecurrentLayer(BaseRecurrentLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
 
BaseRecurrentLayer<LayerConfT extends Layer> - Class in org.deeplearning4j.nn.layers.recurrent
 
BaseRecurrentLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
 
BaseRecurrentLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
 
BaseRecurrentLayer.Builder<T extends BaseRecurrentLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
BaseUpdater - Class in org.deeplearning4j.nn.updater
 
BaseUpdater() - Constructor for class org.deeplearning4j.nn.updater.BaseUpdater
 
BaseUpdater.UpdaterAggregatorImpl - Class in org.deeplearning4j.nn.updater
 
batch() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
batch - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
batch - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Batch size
batch() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Batch size
batch() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
batchedDS - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
BatchNormalization - Class in org.deeplearning4j.nn.conf.layers
Batch normalization configuration
BatchNormalization - Class in org.deeplearning4j.nn.layers.normalization
Batch normalization layer.
BatchNormalization(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
BatchNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
 
BatchNormalizationLayerFactory - Class in org.deeplearning4j.nn.layers.factory
Created by agibsonccc on 9/27/15.
BatchNormalizationLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.BatchNormalizationLayerFactory
 
BatchNormalizationParamInitializer - Class in org.deeplearning4j.nn.params
Batch normalization variable init
BatchNormalizationParamInitializer() - Constructor for class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
batchNum - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
batchSize - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
batchSize() - Method in interface org.deeplearning4j.nn.api.Model
The current inputs batch size
batchSize() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
batchSize() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
batchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
batchSize() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
The batch size for the optimizer
batchSize() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
batchSize() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
bernoullis(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the bernoulli trial for the given event.
BestScoreEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Created by Sadat Anwar on 3/26/16.
BestScoreEpochTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
 
BestScoreEpochTerminationCondition(double, boolean) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
 
beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
beta(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
beta - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
beta(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
BETA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.GRUParamInitializer
 
BIAS_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
BIAS_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
biasInit - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
biasInit - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
biasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
biasInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
biasInit(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
biasL1 - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
biasL2 - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
biasLearningRate - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
biasLearningRate - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
biasLearningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Bias learning rate.
biasLearningRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
biasLearningRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Bias learning rate.
binarize - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
binarize(int) - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Binarize the data based on the threshold (anything < threshold is zero) This is used for making the image brightness agnostic.
binarize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Binarize the data based on the threshold (anything < threshold is zero) This is used for making the image brightness agnostic.
binomial(RandomGenerator, int, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a binomial distributed number using the given rng
BinomialDistribution - Class in org.deeplearning4j.nn.conf.distribution
A binomial distribution.
BinomialDistribution(int, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
Create a distribution
BinomialSamplingPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Binomial sampling pre processor
BinomialSamplingPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
 
build() - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Create the RecordReaderMultiDataSetIterator
build() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Create the early stopping configuration
build() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Create the ComputationGraphConfiguration from the Builder pattern
build() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.GRU.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Return a configuration based on this builder
build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
Build the multi layer network based on this neural network and overr ridden parameters
build() - Method in class org.deeplearning4j.optimize.Solver.Builder
 
build() - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
build() - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
build() - Method in class org.deeplearning4j.plot.Tsne.Builder
 
build() - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
buildCounter(MapFactory<V, Double>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
Builder(int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
 
Builder() - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
Builder(double) - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
 
Builder(double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
Builder(double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
Builder(double, double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
Builder(boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GRU.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
Builder(double, double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
 
Builder(RBM.HiddenUnit, RBM.VisibleUnit) - Constructor for class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
 
Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
 
Builder(SubsamplingLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder(SubsamplingLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
Builder() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
Builder() - Constructor for class org.deeplearning4j.optimize.Solver.Builder
 
Builder() - Constructor for class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
Builder() - Constructor for class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
Builder() - Constructor for class org.deeplearning4j.plot.Tsne.Builder
 
Builder() - Constructor for class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
buildFromData(List<DataPoint>) - Static method in class org.deeplearning4j.clustering.vptree.VPTree
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
byteDesc(long) - Static method in class org.deeplearning4j.util.StringUtils
Return an abbreviated English-language desc of the byte length
byteToHexString(byte[], int, int) - Static method in class org.deeplearning4j.util.StringUtils
Given an array of bytes it will convert the bytes to a hex string representation of the bytes
byteToHexString(byte[]) - Static method in class org.deeplearning4j.util.StringUtils
Same as byteToHexString(bytes, 0, bytes.length).
ByteUtil - Class in org.deeplearning4j.util
 
ByteUtil() - Constructor for class org.deeplearning4j.util.ByteUtil
 

C

calcBackpropGradients(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate gradients and errors.
calcGradient(Gradient, INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the gradient
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calcL1() - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the l1 regularization term
0.0 if regularization is not used.
calcL1() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the L1 regularization term for all layers in the entire network.
calcL1() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcL1() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcL1() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcL1() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcL1() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcL1() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcL1() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcL1() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcL1() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
calcL1() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calcL2() - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the l2 regularization term
0.0 if regularization is not used.
calcL2() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the L2 regularization term for all layers in the entire network.
calcL2() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcL2() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcL2() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcL2() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcL2() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcL2() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcL2() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcL2() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcL2() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
calcL2() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calculate(INDArray, int, double) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
calculate(INDArray, int, double) - Method in class org.deeplearning4j.plot.Tsne
 
calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
 
calculateScore(ComputationGraph) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
 
calculateScore(T) - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
Calculate the score for the given MultiLayerNetwork
call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
 
canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
canDoBackward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertex can do backward pass.
canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
canDoForward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertex can do forward pass.
capitalize(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Uppercases the first character of a string.
Cell - Class in org.deeplearning4j.clustering.quadtree
A cell representing a bounding box forthe quad tree
Cell(double, double, double, double) - Constructor for class org.deeplearning4j.clustering.quadtree.Cell
 
Cell - Class in org.deeplearning4j.clustering.sptree
 
Cell(int) - Constructor for class org.deeplearning4j.clustering.sptree.Cell
 
channels - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
channels - Static variable in class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
checkGradients(MultiLayerNetwork, double, double, boolean, boolean, INDArray, INDArray, boolean) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
Check backprop gradients for a MultiLayerNetwork.
checkGradients(ComputationGraph, double, double, boolean, boolean, INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
Check backprop gradients for a ComputationGraph
checkTerminalConditions(INDArray, double, double, int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Check termination conditions setup a search state
checkTerminalConditions(INDArray, double, double, int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
children() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
chiSquare2by2(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a 2x2 chi-square value.
choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
This will return the cholesky decomposition of the given matrix
CifarDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Created by nyghtowl on 12/18/15.
CifarDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, String) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, int[], String) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, int[], int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, int[], int, String) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
CifarDataSetIterator(int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
Clamps the value to a discrete value
CLASS - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
classCount(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times the given label has actually occurred
Classifier - Interface in org.deeplearning4j.nn.api
A classifier (this is for supervised learning)
classifier() - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
classifyPoint(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoint(Point, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoint(ClusterSet, Point) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
classifyPoints() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
classifyPoints(List<Point>) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoints(List<Point>, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoints(ClusterSet, List<Point>, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
Classify the set of points base on cluster centers.
clear() - Method in class org.deeplearning4j.berkeley.Counter
 
clear() - Method in interface org.deeplearning4j.nn.api.Model
Clear input
clear() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
clear() - Method in interface org.deeplearning4j.nn.gradient.Gradient
Clear residual parameters (useful for returning a gradient and then clearing old objects)
clear() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
clear() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Clear the internal state (if any) of the GraphVertex.
clear() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
clear() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
clear() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Clear the inputs.
clear() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
clear() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
clear() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Removes all of the mappings from this map (optional operation).
clear() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes all of the elements from this applyTransformToDestination (optional operation).
clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Remove the mask arrays from all layers.
See ComputationGraph.setLayerMaskArrays(INDArray[], INDArray[]) for details on mask arrays.
clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Remove the mask arrays from all layers.
See MultiLayerNetwork.setLayerMaskArrays(INDArray, INDArray) for details on mask arrays.
clearVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a clone of this priority queue.
clone() - Method in interface org.deeplearning4j.nn.api.Layer
Clone the layer
clone() - Method in interface org.deeplearning4j.nn.api.Updater
 
clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
clone() - Method in class org.deeplearning4j.nn.conf.distribution.Distribution
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
clone() - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.Layer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Creates and returns a deep copy of the configuration.
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
 
clone() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
clone() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
clone() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
clone() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
clone() - Method in class org.deeplearning4j.nn.updater.BaseUpdater
 
clone() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
 
clone() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
close() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Close any resources opened by the manager.
Cluster - Class in org.deeplearning4j.clustering.cluster
 
Cluster() - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
 
Cluster(Point, String) - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
 
clusterColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
ClusterInfo - Class in org.deeplearning4j.clustering.cluster.info
 
ClusterInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
ClusterInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
ClusteringAlgorithm - Interface in org.deeplearning4j.clustering.algorithm
 
ClusteringAlgorithmCondition - Interface in org.deeplearning4j.clustering.algorithm.condition
 
ClusteringOptimization - Class in org.deeplearning4j.clustering.algorithm.optimisation
 
ClusteringOptimization(ClusteringOptimizationType, double) - Constructor for class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
ClusteringOptimizationType - Enum in org.deeplearning4j.clustering.algorithm.optimisation
 
ClusteringStrategy - Interface in org.deeplearning4j.clustering.algorithm.strategy
 
ClusteringStrategyType - Enum in org.deeplearning4j.clustering.algorithm.strategy
 
ClusterSet - Class in org.deeplearning4j.clustering.cluster
 
ClusterSet() - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
 
ClusterSet(String) - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
 
ClusterSetInfo - Class in org.deeplearning4j.clustering.cluster.info
 
ClusterSetInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
ClusterSetInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
ClusterUtils - Class in org.deeplearning4j.clustering.cluster
Basic cluster utilities
ClusterUtils() - Constructor for class org.deeplearning4j.clustering.cluster.ClusterUtils
 
cnnInputSize - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
cnnInputSize(int, int, int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Size of input for CNNs.
cnnInputSize(int[]) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
CNN input size, in order of {height,width,depth}.
CnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN -> Denselayer
This does two things:
(b) Reshapes 4d activations out of CNN layer, with shape [numExamples, numChannels, inputHeight, inputWidth]) into 2d activations (with shape [numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer (a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape [numExamples, inputHeight*inputWidth*numChannels]) into 4d epsilons (with shape [numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
CnnToFeedForwardPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToFeedForwardPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and RNN layers to be used together.
For example, ConvolutionLayer -> GravesLSTM Functionally equivalent to combining CnnToFeedForwardPreProcessor + FeedForwardToRnnPreProcessor
Specifically, this does two things:
(a) Reshape 4d activations out of CNN layer, with shape [timeSeriesLength*miniBatchSize, numChannels, inputHeight, inputWidth]) into 3d (time series) activations (with shape [numExamples, inputHeight*inputWidth*numChannels, timeSeriesLength]) for use in RNN layers
(b) Reshapes 3d epsilons (weights.*deltas) out of RNN layer (with shape [miniBatchSize,inputHeight*inputWidth*numChannels,timeSeriesLength]) into 4d epsilons with shape [miniBatchSize*timeSeriesLength, numChannels, inputHeight, inputWidth] suitable to feed into CNN layers.
CnnToRnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the combination of n choose r
combineColumns(int, Integer[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
combineColumns(int, int[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
COMMA - Static variable in class org.deeplearning4j.util.StringUtils
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
 
compare(Map<String, Integer>, Map<String, Integer>) - Method in class org.deeplearning4j.util.StringCluster.SizeComparator
 
compareTo(Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair
Compares this object with the specified object for order.
compareTo(HeapItem) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
ComposableInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Composable input pre processor
ComposableInputPreProcessor(InputPreProcessor...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
ComposableIterationListener - Class in org.deeplearning4j.optimize.listeners
A group of listeners
ComposableIterationListener(IterationListener...) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
ComposableIterationListener(Collection<IterationListener>) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
ComputationGraph - Class in org.deeplearning4j.nn.graph
A ComputationGraph network is a neural network with arbitrary (directed acyclic graph) connection structure.
ComputationGraph(ComputationGraphConfiguration) - Constructor for class org.deeplearning4j.nn.graph.ComputationGraph
 
ComputationGraphConfiguration - Class in org.deeplearning4j.nn.conf
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
ComputationGraphConfiguration() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
ComputationGraphConfiguration.GraphBuilder - Class in org.deeplearning4j.nn.conf
 
ComputationGraphUpdater - Class in org.deeplearning4j.nn.updater.graph
Gradient updater for ComputationGraph.
Note: ComputationGraph does not implement the Layer interface (due to multiple in/out etc), hence ComputationGraphUpdater can't be defined as an Updater.
ComputationGraphUpdater(ComputationGraph) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
 
computationGraphUpdater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
ComputationGraphUpdater.Aggregator - Class in org.deeplearning4j.nn.updater.graph
Aggregator for combining ComputationGraphUpdater instances.
ComputationGraphUtil - Class in org.deeplearning4j.nn.graph.util
 
ComputationGraphUtil() - Constructor for class org.deeplearning4j.nn.graph.util.ComputationGraphUtil
 
computeClusterInfos(Cluster, String) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeClusterSetInfo(ClusterSet) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeClusterSetInfo(ClusterSet, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeDeltas2() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
computeDeltasR(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.sptree.SpTree
Compute edge forces using barns hut
computeGaussianKernel(INDArray, double, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Computes a gaussian kernel given a vector of squared distance distances
computeGaussianPerplexity(INDArray, double) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Convert data to probability co-occurrences (aka calculating the kernel)
computeGaussianPerplexity(INDArray, double) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
Convert data to probability co-occurrences (aka calculating the kernel)
computeGradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
Update the score
computeGradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
computeGradientAndScore() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Compute non edge forces using barnes hut
computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.sptree.SpTree
Compute non edge forces using barnes hut
computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Compute score after labels and input have been set.
computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Compute the score for each example individually, after labels and input have been set.
computeSquareDistancesFromNearestCluster(ClusterSet, List<Point>, INDArray, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeZ(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
* Compute input linear transformation (z) of the output layer
computeZ(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concurrentSkipListSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
conf() - Method in interface org.deeplearning4j.nn.api.Model
The configuration for the neural network
conf - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
conf() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
conf - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
conf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
conf() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
conf - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
conf() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
configuration - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.optimize.Solver.Builder
 
confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
confs(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
confusion - Variable in class org.deeplearning4j.eval.Evaluation
 
ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
 
ConfusionMatrix(List<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates an empty confusion Matrix
ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
 
ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
confusionToString() - Method in class org.deeplearning4j.eval.Evaluation
Get a String representation of the confusion matrix
ConjugateGradient - Class in org.deeplearning4j.optimize.solvers
Originally based on cc.mallet.optimize.ConjugateGradient Rewritten based on Conjugate Gradient algorithm in Bengio et al., Deep Learning (in preparation) Ch8.
ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
connect(List<Tree>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Connects the given trees and sets the parents of the children
contains(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
contains(double) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect.Interval
 
contains(INDArray) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
contains(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
contains(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
contains(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains the specified element.
contains(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains all of the elements of the specified collection.
containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
Returns whether the counter contains the given key.
containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
containsKey(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map contains a mapping for the specified key.
containsPoint(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.Cell
Whether the given point is contained within this cell
containsValue(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map maps one or more keys to the specified value.
contrastiveDivergence() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Contrastive divergence revolves around the idea of approximating the log likelihood around x1(input) with repeated sampling.
ConvergenceCondition - Class in org.deeplearning4j.clustering.algorithm.condition
 
ConvergenceCondition(Condition, double) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
 
converter - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
ConvexOptimizer - Interface in org.deeplearning4j.optimize.api
Convex optimizer.
convolutional(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
Input type for convolutional (CNN) data
ConvolutionLayer - Class in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayer - Class in org.deeplearning4j.nn.layers.convolution
Convolution layer
ConvolutionLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
ConvolutionLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
ConvolutionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayerFactory - Class in org.deeplearning4j.nn.layers.factory
Create a convolution layer
ConvolutionLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.ConvolutionLayerFactory
 
ConvolutionLayerSetup - Class in org.deeplearning4j.nn.conf.layers.setup
Automatic configuration of convolutional layers: Handles all layer wise interactions between convolution/subsampling -> dense/output convolution -> subsampling among others.
ConvolutionLayerSetup(MultiLayerConfiguration.Builder, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
Take in the configuration
ConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
Initialize convolution params.
ConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
convolutionType(Convolution.Type) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
convolutionType - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
ConvolutionUtils - Class in org.deeplearning4j.util
Convolutional shape utilities
ConvolutionUtils() - Constructor for class org.deeplearning4j.util.ConvolutionUtils
 
coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
corner(int) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
corner() - Method in class org.deeplearning4j.clustering.sptree.Cell
 
correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the correlation coefficient of two double vectors.
correlationR2(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
corruptionLevel(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
corruptionLevel - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
 
count(V, V) - Method in interface org.deeplearning4j.berkeley.CounterMap.CountFunction
 
Counter<E> - Class in org.deeplearning4j.berkeley
A map from objects to doubles.
Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
CounterMap<K,V> - Class in org.deeplearning4j.berkeley
Maintains counts of (key, value) pairs.
CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap.CountFunction<V> - Interface in org.deeplearning4j.berkeley
 
create() - Method in interface org.deeplearning4j.datasets.creator.DataSetIteratorFactory
Create a dataset iterator
create(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray) - Method in interface org.deeplearning4j.nn.api.LayerFactory
Create a layer based on the based in configuration
create(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray) - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
 
createBeta(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
createBias(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
createBias(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
createDistribution(Distribution) - Static method in class org.deeplearning4j.nn.conf.distribution.Distributions
 
createGamma(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
createGradient(INDArray...) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Create a gradient list based on the passed in parameters.
createGradient(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates a feature vector
createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates an output label matrix
createStepFunction(StepFunction) - Static method in class org.deeplearning4j.optimize.stepfunctions.StepFunctions
 
createWeightMatrix(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
createWeightMatrix(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Direct access to a number represenative of iterating through a dataset
cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
CURVES_FILE_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CURVES_URL - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Curves data fetcher
CurvesDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataSetIterator - Class in org.deeplearning4j.datasets.iterator
Curves data applyTransformToDestination iterator
CurvesDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CurvesDataSetIterator
 
customLossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
customLossFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
customLossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
 
customLossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
 
customLossFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
 
customLossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
 

D

dampingFactor - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
DataPoint - Class in org.deeplearning4j.clustering.sptree
A vector with an index and function for distance
DataPoint(int, INDArray, boolean) - Constructor for class org.deeplearning4j.clustering.sptree.DataPoint
 
DataPoint(int, INDArray, String, boolean) - Constructor for class org.deeplearning4j.clustering.sptree.DataPoint
 
DataPoint(int, INDArray) - Constructor for class org.deeplearning4j.clustering.sptree.DataPoint
 
DataPoint(int, INDArray, String) - Constructor for class org.deeplearning4j.clustering.sptree.DataPoint
 
DataSetFetcher - Interface in org.deeplearning4j.datasets.iterator
Deprecated.
DataSetIterator - Interface in org.deeplearning4j.datasets.iterator
A DataSetIterator handles traversing through a dataset and preparing data for a neural network.
DataSetIteratorFactory - Interface in org.deeplearning4j.datasets.creator
Base interface for creating datasetiterators
DataSetLossCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
Given a DataSetIterator: calculate the total loss for the model on that data set.
DataSetLossCalculator(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
Calculate the score (loss function value) on a given data set (usually a test set)
DataSetLossCalculatorCG - Class in org.deeplearning4j.earlystopping.scorecalc
Given a DataSetIterator: calculate the total loss for the model on that data set.
DataSetLossCalculatorCG(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
Calculate the score (loss function value) on a given data set (usually a test set)
DataSetLossCalculatorCG(MultiDataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
Calculate the score (loss function value) on a given data set (usually a test set)
DataSetPreProcessor - Interface in org.deeplearning4j.datasets.iterator
Pre preProcess a dataset
DataSets - Class in org.deeplearning4j.datasets
 
DataSets() - Constructor for class org.deeplearning4j.datasets.DataSets
 
decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
decay(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
decode(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
decode(INDArray) - Method in class org.deeplearning4j.util.Viterbi
Decodes the given labels, assuming its a binary label matrix
decode(INDArray, boolean) - Method in class org.deeplearning4j.util.Viterbi
Decodes a series of labels
dedupeByCluster(int) - Method in class org.deeplearning4j.util.StringGrid
Deduplicate based on the column clustering signature
dedupeByClusterAll() - Method in class org.deeplearning4j.util.StringGrid
 
DeepLearningConfigurable - Interface in org.deeplearning4j.nn.conf
 
DeepLearningException - Exception in org.deeplearning4j.exception
 
DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningIOUtil - Class in org.deeplearning4j.util
 
DeepLearningIOUtil() - Constructor for class org.deeplearning4j.util.DeepLearningIOUtil
 
DEFAULT_EDGE_VALUE - Static variable in class org.deeplearning4j.eval.Evaluation
 
DEFAULT_FLATTENING_ORDER - Static variable in class org.deeplearning4j.nn.gradient.DefaultGradient
 
DEFAULT_PRECISION - Static variable in class org.deeplearning4j.eval.RegressionEvaluation
 
DEFAULT_WEIGHT_INIT_ORDER - Static variable in class org.deeplearning4j.nn.weights.WeightInitUtil
Default order for the arrays created by WeightInitUtil.
defaultConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
defaultConfiguration - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
DefaultFactory(Class) - Constructor for class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
DefaultGradient - Class in org.deeplearning4j.nn.gradient
Default gradient implementation.
DefaultGradient() - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
 
DefaultGradient(INDArray) - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
 
defaultIterationCount - Static variable in class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
defaultIterationCount - Static variable in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
DefaultLayerFactory - Class in org.deeplearning4j.nn.layers.factory
Default layer factory: create a bias and a weight matrix
DefaultLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
DefaultLexicographicPairComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
DefaultParamInitializer - Class in org.deeplearning4j.nn.params
Static weight initializer with just a weight matrix and a bias
DefaultParamInitializer() - Constructor for class org.deeplearning4j.nn.params.DefaultParamInitializer
 
DefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
Default step function
DefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
 
DefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Default step function
DefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
defineOutputDir(String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Define output directory based on network type
delete(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.KDTree
 
DenseLayer - Class in org.deeplearning4j.nn.conf.layers
Dense layer: fully connected feed forward layer trainable by backprop.
DenseLayer - Class in org.deeplearning4j.nn.layers.feedforward.dense
 
DenseLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
 
DenseLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
 
DenseLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
depth() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
The depth of the node
depth() - Method in class org.deeplearning4j.clustering.sptree.SpTree
The depth of the node
depth() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Finds the depth of the tree.
depth(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns the distance between this node and the specified subnode
derivativeActivation(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Take the derivative of the given input based on the activation
derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
deriveClusterInfoDistanceStatistics(ClusterInfo) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
determinationCoefficient(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
This returns the determination coefficient of two vectors given a length
diag(INDArray) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
diag(INDArray) - Method in class org.deeplearning4j.plot.Tsne
 
difference(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
difference(Collection<? extends T>, Collection<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
Return is s1 \ s2
discretize(double, double, double, int) - Static method in class org.deeplearning4j.util.MathUtils
Discretize the given value
DiskBasedQueue<E> - Class in org.deeplearning4j.util
Naive disk based queue for storing items on disk.
DiskBasedQueue() - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
DiskBasedQueue(String) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
DiskBasedQueue(File) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
 
dist - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
dist(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Distribution to sample initial weights from.
dist - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
dist - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
dist(Distribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Distribution to sample initial weights from.
distance(DataPoint) - Method in class org.deeplearning4j.clustering.sptree.DataPoint
Euclidean distance
distanceFinderZValue(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will translate a vector in to an equivalent integer
distanceFunction - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
Distribution - Class in org.deeplearning4j.nn.conf.distribution
An abstract distribution.
Distribution() - Constructor for class org.deeplearning4j.nn.conf.distribution.Distribution
 
Distributions - Class in org.deeplearning4j.nn.conf.distribution
Static method for instantiating an nd4j distribution from a configuration object.
Distributions() - Constructor for class org.deeplearning4j.nn.conf.distribution.Distributions
 
distributionVariationRateLessThan(double) - Static method in class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
 
Dl4jReflection - Class in org.deeplearning4j.util
 
doBackward(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Do backward pass
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
doForward(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Do forward pass using the stored inputs
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
dotProduct(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
doTruncatedBPTT(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the network using truncated BPTT
doTruncatedBPTT(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
downloadAndUntar() - Method in class org.deeplearning4j.base.MnistFetcher
 
draw() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
draw() - Method in class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
draw() - Method in class org.deeplearning4j.plot.NeuralNetworkReconstructionRender
 
DrawReconstruction - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawReconstruction(INDArray, int, int) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
DrawReconstruction(INDArray) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
dropOut - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
dropOut(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
dropOut - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
dropOut - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
dropOut(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
Dropout - Class in org.deeplearning4j.util
 
Dropout() - Constructor for class org.deeplearning4j.util.Dropout
 
dropoutApplied - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
dropoutMask - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
ds - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of duplication.
DuplicateToTimeSeriesVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of duplication.
DuplicateToTimeSeriesVertex(ComputationGraph, String, int, String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
DuplicateToTimeSeriesVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 

E

EarlyStoppingConfiguration<T extends Model> - Class in org.deeplearning4j.earlystopping
Early stopping configuration: Specifies the various configuration options for running training with early stopping.
Users need to specify the following:
(a) EarlyStoppingModelSaver: How models will be saved (to disk, to memory, etc) (Default: in memory)
(b) Termination conditions: at least one termination condition must be specified
(i) Iteration termination conditions: calculated once for each minibatch.
EarlyStoppingConfiguration.Builder<T extends Model> - Class in org.deeplearning4j.earlystopping
 
EarlyStoppingGraphTrainer - Class in org.deeplearning4j.earlystopping.trainer
Class for conducting early stopping training locally (single machine).
Can be used to train a ComputationGraph
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
 
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
Constructor for training using a DataSetIterator
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, MultiDataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
Constructor for training using a MultiDataSetIterator
EarlyStoppingListener<T extends Model> - Interface in org.deeplearning4j.earlystopping.listener
EarlyStoppingListener is a listener interface for conducting early stopping training.
EarlyStoppingModelSaver<T extends Model> - Interface in org.deeplearning4j.earlystopping
Interface for saving MultiLayerNetworks learned during early stopping, and retrieving them again later
EarlyStoppingResult<T extends Model> - Class in org.deeplearning4j.earlystopping
EarlyStoppingResult: contains the results of the early stopping training, such as: - Why the training was terminated - Score vs.
EarlyStoppingResult(EarlyStoppingResult.TerminationReason, String, Map<Integer, Double>, int, double, int, T) - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingResult
 
EarlyStoppingResult.TerminationReason - Enum in org.deeplearning4j.earlystopping
 
EarlyStoppingTrainer - Class in org.deeplearning4j.earlystopping.trainer
Class for conducting early stopping training locally (single machine), for training a MultiLayerNetwork.
EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerConfiguration, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator, EarlyStoppingListener<MultiLayerNetwork>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
editDistance(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the Levenshtein (edit) distance of the two given Strings.
element() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
ElementWiseVertex - Class in org.deeplearning4j.nn.conf.graph
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction or multiplication.
ElementWiseVertex(ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
ElementWiseVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction or multiplication.
ElementWiseVertex(ComputationGraph, String, int, ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
ElementWiseVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.conf.graph
 
ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.graph.vertex.impl
 
EmbeddingLayer - Class in org.deeplearning4j.nn.conf.layers
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1) as input.
EmbeddingLayer - Class in org.deeplearning4j.nn.layers.feedforward.embedding
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1) as input.
EmbeddingLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
 
EmbeddingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
EmptyFactory - Class in org.deeplearning4j.nn.layers.factory
 
EmptyFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.EmptyFactory
 
emptyIterator() - Static method in class org.deeplearning4j.berkeley.Iterators
 
EmptyParamInitializer - Class in org.deeplearning4j.nn.params
 
EmptyParamInitializer() - Constructor for class org.deeplearning4j.nn.params.EmptyParamInitializer
 
emptyStringArray - Static variable in class org.deeplearning4j.util.StringUtils
 
enableHttps(boolean) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
encode(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
endWhenDistributionVariationRateLessThan(double) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
endWhenDistributionVariationRateLessThan(double) - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
endWhenIterationCountEquals(int) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
endWhenIterationCountEquals(int) - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
enlarge(double) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect.Interval
 
enlargeTo(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
ensureCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
entropy(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy (information gain, or uncertainty of a random variable).
Entry(K, T, V) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
entrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
entrySet() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Set view of the mappings contained in this map.
EnumUtil - Class in org.deeplearning4j.util
Created by agibsonccc on 9/3/14.
EnumUtil() - Constructor for class org.deeplearning4j.util.EnumUtil
 
EpochTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
Interface for termination conditions to be evaluated once per epoch (i.e., once per pass of the full data set), based on a score and epoch number
epochTerminationConditions(EpochTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
epochTerminationConditions(List<EpochTerminationCondition>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
eps - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
epsilon - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
epsilon() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
epsilons - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
EpsTermination - Class in org.deeplearning4j.optimize.terminations
Epsilon termination (absolute change based on tolerance)
EpsTermination(double, double) - Constructor for class org.deeplearning4j.optimize.terminations.EpsTermination
 
EpsTermination() - Constructor for class org.deeplearning4j.optimize.terminations.EpsTermination
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Counter
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Pair
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Triple
 
equals(Object) - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
equals(Object) - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
equals(Object) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
equals(Object) - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
equals(Object) - Method in class org.deeplearning4j.eval.ConfusionMatrix
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
 
equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
 
equals(Object) - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
equals(Object) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
equals(Object) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
 
equals(Object) - Method in class org.deeplearning4j.util.Index
 
equals(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
error(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Calculate error with respect to the current layer.
error(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
error(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
error() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns the prediction error for this node
error(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
error(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
errorFor(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
errorSum() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns the total prediction error for this tree and its children
ESCAPE_CHAR - Static variable in class org.deeplearning4j.util.StringUtils
 
escapeHTML(String) - Static method in class org.deeplearning4j.util.StringUtils
Escapes HTML Special characters present in the string.
escapeString(String, char[], char) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
escapeString(String) - Static method in class org.deeplearning4j.util.StringUtils
Escape commas in the string using the default escape char
escapeString(String, char, char) - Static method in class org.deeplearning4j.util.StringUtils
Escape charToEscape in the string with the escape char escapeChar
escapeString(String, char, char[]) - Static method in class org.deeplearning4j.util.StringUtils
 
esConfig - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
euclideanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the distance of two vectors sum(i=1,n) (q_i - p_i)^2
euclideanDistance(float[], float[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the distance of two vectors sum(i=1,n) (q_i - p_i)^2
eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.Evaluation
Collects statistics on the real outcomes vs the guesses.
eval(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Evaluate a single prediction (one prediction at a time)
eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
evalTimeSeries(INDArray, INDArray) - Method in class org.deeplearning4j.eval.Evaluation
Convenience method for evaluation of time series.
evalTimeSeries(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.Evaluation
Evaluate a time series, whether the output is masked usind a masking array.
evalTimeSeries(INDArray, INDArray) - Method in class org.deeplearning4j.eval.RegressionEvaluation
Convenience method for evaluation of time series.
evalTimeSeries(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.RegressionEvaluation
Evaluate a time series, whether the output is masked usind a masking array.
evaluate(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Evaluate the network (classification performance)
evaluate(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Evaluate the network on the provided data set.
evaluateEveryNEpochs(int) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
How frequently should evaluations be conducted (in terms of epochs)? Defaults to every (1) epochs.
Evaluation - Class in org.deeplearning4j.eval
Evaluation metrics: precision, recall, f1
Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
 
Evaluation(int) - Constructor for class org.deeplearning4j.eval.Evaluation
 
Evaluation(List<String>) - Constructor for class org.deeplearning4j.eval.Evaluation
 
Evaluation(Map<Integer, String>) - Constructor for class org.deeplearning4j.eval.Evaluation
 
exactBinomial(int, int, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one tailed exact binomial test probability.
exampleCount - Variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
exp(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 

F

f1(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Calculate f1 score for a given class
f1() - Method in class org.deeplearning4j.eval.Evaluation
TP: true positive FP: False Positive FN: False Negative F1 score: 2 * TP / (2TP + FP + FN)
f1Score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the f1 score for the given examples.
f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Returns the f1 score for the given examples.
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
Returns the f1 score for the given examples.
f1Score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
fa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the factorial of the given number n.
Factory<T> - Interface in org.deeplearning4j.berkeley
 
Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
 
FACTORY_KEY - Static variable in interface org.deeplearning4j.datasets.creator.DataSetIteratorFactory
 
falseAlarmRate() - Method in class org.deeplearning4j.eval.Evaluation
False Alarm Rate (FAR) reflects rate of misclassified to classified records http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw
falseNegativeRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false negative rate for a given label
falseNegativeRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false negative rate for a given label
falseNegativeRate() - Method in class org.deeplearning4j.eval.Evaluation
False negative rate based on guesses so far Takes into account all known classes and outputs average fnr across all of them
falseNegatives - Variable in class org.deeplearning4j.eval.Evaluation
 
falseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
False negatives: correctly rejected
falsePositiveRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false positive rate for a given label
falsePositiveRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false positive rate for a given label
falsePositiveRate() - Method in class org.deeplearning4j.eval.Evaluation
False positive rate based on guesses so far Takes into account all known classes and outputs average fpr across all of them
falsePositives - Variable in class org.deeplearning4j.eval.Evaluation
 
falsePositives() - Method in class org.deeplearning4j.eval.Evaluation
False positive: wrong guess
feedForward(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
InputType for feed forward network data
feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using a single input array.
feedForward(INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using an array of inputs
feedForward() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using the stored inputs, at test time
feedForward(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using the stored inputs
feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the output layer, given mask arrays (that may be null) The masking arrays are used in situations such an one-to-many and many-to-one rucerrent neural network (RNN) designs, as well as for supporting time series of varying lengths within the same minibatch for RNNs.
FeedForwardLayer - Class in org.deeplearning4j.nn.conf.layers
Created by jeffreytang on 7/21/15.
FeedForwardLayer(FeedForwardLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
 
FeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
feedForwardR(List<INDArray>, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Feed forward with the r operator
FeedForwardToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> CNN
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape [numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape [numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape [numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape [numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer Note: numChannels is equivalent to depth or featureMaps referenced in different literature
FeedForwardToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
Reshape to a channels x rows x columns tensor
FeedForwardToCnnPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
feedForwardToLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
feedForwardToLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
feedForwardToLayer(int, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer, using the currently set input for the network.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
FeedForwardToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, DenseLayer -> GravesLSTM
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape [miniBatchSize*timeSeriesLength,layerSize]) into 3d activations (with shape [miniBatchSize,layerSize,timeSeriesLength]) suitable to feed into RNN layers.
(b) Reshapes 3d epsilons (weights*deltas from RNN layer, with shape [miniBatchSize,layerSize,timeSeriesLength]) into 2d epsilons (with shape [miniBatchSize*timeSeriesLength,layerSize]) for use in feed forward layer
FeedForwardToRnnPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
Fetches the next dataset.
fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
FILE_DIR - Variable in class org.deeplearning4j.base.MnistFetcher
 
fileNameClean(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns a "clean" version of the given filename in which spaces have been converted to dashes and all non-alphaneumeric chars are underscores.
FileOperations - Class in org.deeplearning4j.util
 
fillDown(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
Filter<T> - Interface in org.deeplearning4j.berkeley
Filters are boolean cooccurrences which accept or reject items.
filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
filterBySimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
 
FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilterPanel - Class in org.deeplearning4j.plot
 
FilterPanel(BufferedImage) - Constructor for class org.deeplearning4j.plot.FilterPanel
 
filterRowsByColumn(int, Collection<String>) - Method in class org.deeplearning4j.util.StringGrid
 
finalMomentum - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
finalMomentum - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
finalMomentum - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
finalMomentum - Variable in class org.deeplearning4j.plot.Tsne
 
find(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found inside this String.
findIndex(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Returns the cell of this element
findNext(String, char, char, int, StringBuilder) - Static method in class org.deeplearning4j.util.StringUtils
Finds the first occurrence of the separator character ignoring the escaped separators starting from the index.
finetune() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Run SGD based on the given labels
FingerPrintKeyer - Class in org.deeplearning4j.util
Copied from google refine: takes the key and gets rid of all punctuation, transforms to lower case and alphabetic sorts the words
FingerPrintKeyer() - Constructor for class org.deeplearning4j.util.FingerPrintKeyer
 
firstChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
 
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
 
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
fit() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
Conduct early stopping training
fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.Classifier
Train the model based on the datasetiterator
fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit() - Method in interface org.deeplearning4j.nn.api.Model
All models have a fit method
fit(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Fit the model to the given data
fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
fit(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a DataSet.
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a DataSetIterator.
fit(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a MultiDataSet
fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a MultiDataSetIterator
fit(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph given arrays of inputs and labels.
fit(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using the specified inputs and labels (and mask arrays)
fit() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
fit(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
fit() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model to the given data
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Note: k is the first input hidden params.
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the unsupervised model
fit(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
fit() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
fit(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
fit(INDArray, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
FixedClusterCountStrategy - Class in org.deeplearning4j.clustering.algorithm.strategy
 
FixedClusterCountStrategy(Integer, String, boolean) - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
FixedIterationCountCondition - Class in org.deeplearning4j.clustering.algorithm.condition
 
FixedIterationCountCondition(int) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
 
flattenedGradients - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
flattenedGradients - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
flattenedImageFromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
Deprecated.
 
flattenedParams - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
flattenedParams - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
flatteningOrderForVariable(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
flatteningOrderForVariable(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
Return the gradient flattening order for the specified variable, or null if it is not explicitly set
forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
Set forget gate bias initalizations.
forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
Set forget gate bias initalizations.
formatPercent(double, int) - Static method in class org.deeplearning4j.util.StringUtils
Format a percentage for presentation to the user.
formatTime(long) - Static method in class org.deeplearning4j.util.StringUtils
Given the time in long milliseconds, returns a String in the format Xhrs, Ymins, Z sec.
formatTimeDiff(long, long) - Static method in class org.deeplearning4j.util.StringUtils
Given a finish and start time in long milliseconds, returns a String in the format Xhrs, Ymins, Z sec, for the time difference between two times.
frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
fromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
Deprecated.
 
fromFile(String, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromInput(InputStream, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Create a computation graph configuration from json
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
Create a neural net configuration from json
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Create a neural net configuration from json
fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
This will take a given string and separator and convert it to an equivalent double array.
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Create a neural net configuration from json
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
Create a neural net configuration from json
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Create a neural net configuration from json
fwdPassOutput - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
fwdPassOutputAsArrays - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
FwdPassReturn - Class in org.deeplearning4j.nn.layers.recurrent
Created by benny on 12/31/15.
FwdPassReturn() - Constructor for class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 

G

ga - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
gains - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
gamma(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
GAMMA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
GaussianDistribution - Class in org.deeplearning4j.nn.conf.distribution
A normal distribution.
GaussianDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.GaussianDistribution
Create a gaussian distribution (equivalent to normal) with the given mean and std
generateUniform(int) - Static method in class org.deeplearning4j.util.MathUtils
This will generate a series of uniformally distributed numbers between l times
get(int) - Method in class org.deeplearning4j.util.Index
 
get(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.
get(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
getAccumulation() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getActualTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class actually appeared in the data.
getAggregator(boolean) - Method in interface org.deeplearning4j.nn.api.Updater
Given this updater, get an UpdaterAggregator that can be used to combine the current state (if any) of this updater with the state of other updaters.
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.AdaDeltaUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.AdaGradUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.AdamUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
Get an Aggregator for combining ComputationGraphUpdater instances.
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.NesterovsUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.NoOpUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.RmsPropUpdater
 
getAggregator(boolean) - Method in class org.deeplearning4j.nn.updater.SgdUpdater
 
getAllFields(Class<?>) - Static method in class org.deeplearning4j.util.Dl4jReflection
 
getAllWithSimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
 
getArray() - Method in class org.deeplearning4j.clustering.cluster.Point
 
getAveragePointDistanceFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getAveragePointDistanceFromClusterCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getBegin() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
getBestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
Retrieve the best model that was previously saved
getBestModel() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingResult
 
getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
getBoundary() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getBoundary() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getCenter() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getCenterOfMass() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getCenterOfMass() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getChildren() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getChildren() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
getClass(T) - Static method in class org.deeplearning4j.util.ReflectionUtils
Return the correctly-typed Class of the given object.
getClasses() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the applyTransformToDestination of all classes in the confusion matrix.
getClassLabel(Integer) - Method in class org.deeplearning4j.eval.Evaluation
 
getCluster(String) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getCluster() - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
getClusterCenter(String) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getClusterCenterId(String) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getClusterCount() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getClusterInfo(String) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getClusteringOptimizationValue() - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
getClusters() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getClusters() - Method in class org.deeplearning4j.util.StringCluster
 
getClusterSetInfo() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
getClustersInfos() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getClustersWhereAverageDistanceFromCenterGreaterThan(ClusterSet, ClusterSetInfo, double) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
getClustersWhereMaximumDistanceFromCenterGreaterThan(ClusterSet, ClusterSetInfo, double) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
getCols() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of columns per image.
getColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
getComputationGraphUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
getComputationGraphUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
getConf(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
getConf() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
getConf() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
getConfiguration() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
getConfusionMatrix() - Method in class org.deeplearning4j.eval.Evaluation
Returns the confusion matrix variable
getCorruptedInput(INDArray, double) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
Corrupts the given input by doing a binomial sampling given the corruption level
getCount(E) - Method in class org.deeplearning4j.berkeley.Counter
Get the count of the element, or zero if the element is not in the counter.
getCount(K, V) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the count of the given (key, value) entry, or zero if that entry is not present.
getCount(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the total count of the given key, or zero if that key is not present.
getCount() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getCount(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the count of the number of times the "predicted" class was predicted for the "actual" class.
getCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the sub-counter for the given key.
getCounters() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getCumSize() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getCumSize() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getCurrentIndex() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
The current entry index.
getD() - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
getD() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getDefaultConfiguration() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getDefaultStepFunctionForOptimizer(Class<? extends ConvexOptimizer>) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
getDeflt() - Method in class org.deeplearning4j.berkeley.Counter
 
getDistance(Point, Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getDistance() - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
getDistanceFromCenter() - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
getDistanceFromNearestCluster(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getDistanceFunction() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
getDistanceFunction() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
getDistances() - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
getDistancesBetweenClustersCenters() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getDistanceToCenter(Point) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getEmptyConstructor(Class<?>) - Static method in class org.deeplearning4j.util.Dl4jReflection
Gets the empty constructor from a class
getEnd() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Number of bytes for each entry.
getEntryLength() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getErrors() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
getErrors() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the array of errors previously set for this GraphVertex
getExtraArgs() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getFactory(NeuralNetConfiguration) - Static method in class org.deeplearning4j.nn.layers.factory.LayerFactories
Get the factory based on the passed in class
getFactory(Layer) - Static method in class org.deeplearning4j.nn.layers.factory.LayerFactories
Get the factory based on the passed in class
getFieldsAsProperties(Object, Class<?>[]) - Static method in class org.deeplearning4j.util.Dl4jReflection
Get fields as properties
getFilters() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
getFirst() - Method in class org.deeplearning4j.berkeley.Pair
 
getFirst() - Method in class org.deeplearning4j.berkeley.Triple
 
getFirstKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getFirstPart() - Method in class org.deeplearning4j.ui.UiConnectionInfo
This method returns scheme, address and port for this UiConnectionInfo i.e: https://localhost:8080
getFormattedTimeWithDiff(DateFormat, long, long) - Static method in class org.deeplearning4j.util.StringUtils
Formats time in ms and appends difference (finishTime - startTime) as returned by formatTimeDiff().
getFullAddress(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo
 
getFullAddress() - Method in class org.deeplearning4j.ui.UiConnectionInfo
 
getGradientFor(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
getGradientFor(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
The gradient for the given variable
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
Return a map of gradients (in their standard non-flattened representation), taken from the flattened (row vector) gradientView array.
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GRUParamInitializer
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getHeadWord() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
getHeightAndWidth(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
Get the height and width from the configuration
getHeightAndWidth(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
Get the height and width for an image
getHh() - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
getHostname() - Static method in class org.deeplearning4j.util.StringUtils
Return hostname without throwing exception.
getHw() - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
getId() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getId() - Method in class org.deeplearning4j.clustering.cluster.Point
 
getIdParamPaths(String, int[]) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Create map of *int* layerIds to path
getImage() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
getImages() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying images file as MnistImageFile.
getIndex() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
getIndex() - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
getIndex() - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
getIndex() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getIndex() - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
getIndex() - Method in interface org.deeplearning4j.nn.api.Layer
Get the layer index.
getIndex() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getIndex() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
getIndex() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getInitialClusterCount() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
getInitialClusterCount() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
getInput(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the previously set input for the ComputationGraph
getInput() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getInput() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
getInput() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getInput() - Method in class org.deeplearning4j.plot.PlotFilters
 
getInputMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the previously set feature/input mask arrays for the ComputationGraph
getInputMiniBatchSize() - Method in interface org.deeplearning4j.nn.api.Layer
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getInputPreProcess(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
getInputs() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the previously set inputs for the ComputationGraph
getInputs() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the array of inputs previously set for this GraphVertex
getInputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z then the Zth output of vertex Y is the Xth input to this vertex
getInputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z then the Zth output connection (see GraphVertex.getNumOutputConnections() of vertex Y is the Xth input to this vertex
getInstance(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
getItems() - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
getIteration() - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
getIteration() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
getIterationCount() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
getIterationInfo(int) - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
getIterationListener() - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
getIterationsInfos() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
getKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
Returns the key corresponding to this entry.
getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getLabel() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getLabel() - Method in class org.deeplearning4j.clustering.cluster.Point
 
getLabelMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the previously set label/output mask arrays for the ComputationGraph
getLabelName(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
getLabels() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Get the underlying labels file as MnistLabelFile.
getLabels() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
getLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
getLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLabels2d() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
getLabels2d() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
getLastHeight() - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getLastOutChannels() - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getLastWidth() - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getLatestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
Retrieve the most recent model that was previously saved
getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
getLayer(int, MultiLayerConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the layer by the number of that layer, in range 0 to getNumLayers()-1 NOTE: This is different from the internal GraphVertex index for the layer
getLayer(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get a given layer by name.
getLayer() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the Layer (if any).
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
getLayer(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLayer(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLayerNames() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get all layers in the ComputationGraph
getLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLayerwise() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
getLayerWiseConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
getLeaves() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Gets the leaves of the tree.
getLeaves(List<T>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Gets the leaves of the tree.
getLeft() - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
getLeft() - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
getListeners() - Method in interface org.deeplearning4j.nn.api.Layer
Get the iteration listeners for this layer.
getListeners() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the IterationListeners for the ComputationGraph
getListeners() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getListeners() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
getListeners() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getLogMetaInstability() - Method in class org.deeplearning4j.util.Viterbi
 
getLogOfDiangnalTProb() - Method in class org.deeplearning4j.util.Viterbi
 
getLogPCorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getLogPIncorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getLogStates() - Method in class org.deeplearning4j.util.Viterbi
 
getLower(INDArray, int) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
getLower() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
MNIST DB files start with unique integer number.
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
 
getMask() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getMax() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMaxIterations() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
getMaxPointDistanceFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getMean() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
getMean() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMetaStability() - Method in class org.deeplearning4j.util.Viterbi
 
getMin() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getMostPopulatedClusters(int) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getMostRecentClusterSetInfo() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
getMostRecentIterationInfo() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
getMostSpreadOutClusters(ClusterSet, ClusterSetInfo, int) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
getNameLabel(String) - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getNewDestination(String, boolean) - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getnInForLayer() - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getnLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Get the number of layers in the network
getNorthEast() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getNorthWest() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getNumberOfTrials() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
getNumChildren() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
getNumColumns() - Method in class org.deeplearning4j.util.StringGrid
 
getNumDataSets() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
getNumExamplesTotal() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getNumExamplesToTrainOn() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
The number of inputs to this network
getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
getNumInputArrays() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the number of input arrays.
getNumLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Returns the number of layers in the ComputationGraph
getNumOutputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
The number of output (arrays) for this network
getNumOutputConnections() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
getNumOutputConnections() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the number of outgoing connections from this GraphVertex.
getNumRowCounter() - Method in class org.deeplearning4j.eval.Evaluation
 
getNumTestExamples() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getOptimizationPhaseCondition() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
getOptimizer() - Method in interface org.deeplearning4j.nn.api.Model
Returns this models optimizer
getOptimizer() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
getOptimizer() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getOptimizer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getOptimizer() - Method in class org.deeplearning4j.optimize.Solver
 
getOptimizer() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
getOutputFile() - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
getOutputFile() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
getOutputLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the specified output layer, by index.
getOutputLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Get the output layer
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
Determine the type of output for this GraphVertex, given the specified inputs.
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
getOutputType(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
getOutputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
A representation of the vertices that this vertex is connected to (outputs duing forward pass) Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z then the Xth output of this vertex is connected to the Zth input of vertex Y
getOutputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
A representation of the vertices that this vertex is connected to (outputs duing forward pass) Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z then the Xth output of this vertex is connected to the Zth input of vertex Y
getOutSizesEachLayer() - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
getPairIterator() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getParam(String) - Method in interface org.deeplearning4j.nn.api.Model
Get the parameter
getParam(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
getParam(String) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
getParam(String) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
getParam(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
getParam(String) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
getParams(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
getParent() - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
getParent() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getPathLabel(String) - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getpCorrect() - Method in class org.deeplearning4j.util.Viterbi
 
getPerplexity() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
getPlot() - Method in class org.deeplearning4j.plot.PlotFilters
Returns the plot ndarray to be rendered
getPoint(String) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getPoint() - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
getPoint() - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
getPointDistanceFromCenterVariance() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getPointDistanceFromClusterVariance() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getPointDistancesFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getPointDistribution() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
getPointLocationChange() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getPoints() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
getPointsCount() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
getPointsFartherFromCenterThan(double) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getPossibleLabels() - Method in class org.deeplearning4j.util.Viterbi
 
getPredictedTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class was predicted by the classifier.
getPriority() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
getPriority() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Gets the priority of the highest-priority element of the queue.
getProbability(E) - Method in class org.deeplearning4j.berkeley.Counter
I know, I know, this should be wrapped in a Distribution class, but it's such a common use...why not.
getProbabilityOfSuccess() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
getReverseSortedPointDistancesFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getRight() - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
getRight() - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
getRow(int) - Method in class org.deeplearning4j.util.StringGrid
 
getRows() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Number of rows per image.
getRowsWithColumnValues(Collection<String>, int) - Method in class org.deeplearning4j.util.StringGrid
 
getRowsWithDuplicateValuesInColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
getRowWithOnlyOneOccurrence(int) - Method in class org.deeplearning4j.util.StringGrid
 
getSecond() - Method in class org.deeplearning4j.berkeley.Pair
 
getSecond() - Method in class org.deeplearning4j.berkeley.Triple
 
getSecondKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getSecondPart() - Method in class org.deeplearning4j.ui.UiConnectionInfo
 
getSecondPart(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo
 
getShape(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
getSimiarlityFunction() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
getSize() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getSortedKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
getSortedPointDistancesFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getSouthEast() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getSouthWest() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
getStates() - Method in class org.deeplearning4j.util.Viterbi
 
getStd() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
getStepMax() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
getStringCollection(String) - Static method in class org.deeplearning4j.util.StringUtils
Returns a collection of strings.
getStringParamPaths(String, String[]) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Create map of *string* layerIds to path
getStrings(String) - Static method in class org.deeplearning4j.util.StringUtils
Returns an arraylist of strings.
getSum() - Method in class org.deeplearning4j.util.SummaryStatistics
 
getTerminationCondition() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
getTerminationCondition() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
getTest() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getTheta() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
getThird() - Method in class org.deeplearning4j.berkeley.Triple
 
getThreshold() - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
getTokens() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
getTotalPointDistanceFromCenter() - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
getTrain() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
getTrimmedStringCollection(String) - Static method in class org.deeplearning4j.util.StringUtils
Splits a comma separated value String, trimming leading and trailing whitespace on each value.
getTrimmedStrings(String) - Static method in class org.deeplearning4j.util.StringUtils
Splits a comma separated value String, trimming leading and trailing whitespace on each value.
getType() - Method in class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
getType() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
getType() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
 
getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
 
getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
 
getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
 
getType() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
The type of node; mainly extra meta data
getUniqueRows() - Method in class org.deeplearning4j.util.StringGrid
 
getUpdater() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the ComputationGraphUpdater for the network
getUpdater() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Get the updater for this MultiLayerNetwork
getUpdater() - Method in class org.deeplearning4j.nn.updater.AdaDeltaUpdater.AdaDeltaAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.AdaGradUpdater.AdaGradAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.AdamUpdater.AdamAggregator
 
getUpdater() - Method in interface org.deeplearning4j.nn.updater.aggregate.UpdaterAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater.Aggregator
Get the final ComputationGraphUpdater given the internal (aggregated) updater state
getUpdater() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater.MultiLayerUpdaterAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.NesterovsUpdater.NesterovsAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.NoOpUpdater.NoOpAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.RmsPropUpdater.RmsPropAggregator
 
getUpdater() - Method in class org.deeplearning4j.nn.updater.SgdUpdater.SgdAggregator
 
getUpdater(Model) - Static method in class org.deeplearning4j.nn.updater.UpdaterCreator
 
getUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
getUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
getUpper(INDArray, int) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
getUpper() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
getValue() - Method in class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
getValue() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
getVariables() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
getVertex(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Return a given GraphVertex by name, or null if no vertex with that name exists
getVertexEdgeNumber() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
The edge number.
getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
getVertexIndex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the index of the GraphVertex
getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
Index of the vertex
getVertexName() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
getVertexName() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Get the name/label of the GraphVertex
getVertices() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Returns an array of all GraphVertex objects.
getX() - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
getY() - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
getY() - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
getYGradient(int, INDArray, INDArray) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
gibbhVh(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Gibbs sampling step: hidden ---> visible ---> hidden
globalConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
goldLabel() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
gr(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is greater than b.
gradient() - Method in interface org.deeplearning4j.nn.api.Model
Calculate a gradient
gradient(List<String>) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
gradient() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
Gradient - Interface in org.deeplearning4j.nn.gradient
Generic gradient
gradient(List<String>) - Method in interface org.deeplearning4j.nn.gradient.Gradient
The full gradient as one flat vector
gradient() - Method in interface org.deeplearning4j.nn.gradient.Gradient
The full gradient as one flat vector
gradient - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
gradient() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
gradient - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
gradient() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
gradient() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Gets the gradient from one training iteration
gradient() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
gradient - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
gradient() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
gradient(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
gradient() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
gradient(INDArray) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
GRADIENT_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
gradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
Get the gradient and score
gradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
gradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
gradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
gradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
gradientAndScore() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
The gradient and score for this optimizer
gradientAndScore() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
gradientAndScore() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
GradientCheckUtil - Class in org.deeplearning4j.gradientcheck
A utility for numerically checking gradients.
GradientCheckUtil() - Constructor for class org.deeplearning4j.gradientcheck.GradientCheckUtil
 
gradientForVariable() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
gradientForVariable() - Method in interface org.deeplearning4j.nn.gradient.Gradient
Gradient look up table
GradientNormalization - Enum in org.deeplearning4j.nn.conf
Gradient normalization strategies.
gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Gradient normalization strategy.
gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
gradientNormalization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Gradient normalization strategy.
gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer, GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer, GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
gradientsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
GradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
Normal gradient step function
GradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
 
GradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Normal gradient step function
GradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
 
gradientViews - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
graph - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
GraphBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
graphBuilder() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
GraphVertex - Class in org.deeplearning4j.nn.conf.graph
A GraphVertex is a vertex in the computation graph.
GraphVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.GraphVertex
 
GraphVertex - Interface in org.deeplearning4j.nn.graph.vertex
A GraphVertex is a vertex in the computation graph.
GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.conf.layers
LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks http://www.cs.toronto.edu/~graves/phd.pdf
GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.layers.recurrent
RNN tutorial: http://deeplearning4j.org/usingrnns.html READ THIS FIRST Bdirectional LSTM layer implementation.
GravesBidirectionalLSTM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
GravesBidirectionalLSTM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
GravesBidirectionalLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
 
GravesBidirectionalLSTMLayerFactory - Class in org.deeplearning4j.nn.layers.factory
LSTM layer initializer.
GravesBidirectionalLSTMLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.GravesBidirectionalLSTMLayerFactory
 
GravesBidirectionalLSTMParamInitializer - Class in org.deeplearning4j.nn.params
LSTM Parameter initializer, for LSTM based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks http://www.cs.toronto.edu/~graves/phd.pdf
GravesBidirectionalLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
GravesLSTM - Class in org.deeplearning4j.nn.conf.layers
LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks http://www.cs.toronto.edu/~graves/phd.pdf
GravesLSTM - Class in org.deeplearning4j.nn.layers.recurrent
LSTM layer implementation.
GravesLSTM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
GravesLSTM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
GravesLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
 
GravesLSTMLayerFactory - Class in org.deeplearning4j.nn.layers.factory
LSTM layer initializer.
GravesLSTMLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.GravesLSTMLayerFactory
 
GravesLSTMParamInitializer - Class in org.deeplearning4j.nn.params
LSTM Parameter initializer, for LSTM based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks http://www.cs.toronto.edu/~graves/phd.pdf
GravesLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
GREATER - Static variable in class org.deeplearning4j.clustering.kdtree.KDTree
 
grow(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
GRU - Class in org.deeplearning4j.nn.conf.layers
Gated Recurrent Unit RNN Layer.
The GRU was recently proposed by Cho et al.
GRU - Class in org.deeplearning4j.nn.layers.recurrent
Gated Recurrent Unit RNN Layer.
The GRU was recently proposed by Cho et al.
GRU(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GRU
 
GRU(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GRU
 
GRU.Builder - Class in org.deeplearning4j.nn.conf.layers
 
GRULayerFactory - Class in org.deeplearning4j.nn.layers.factory
GRU: Gated Recurrent Unit RNN
GRULayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.GRULayerFactory
 
GRUParamInitializer - Class in org.deeplearning4j.nn.params
 
GRUParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GRUParamInitializer
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.MnistFetcher
 

H

hashCode() - Method in class org.deeplearning4j.berkeley.Counter
 
hashCode() - Method in class org.deeplearning4j.berkeley.Pair
 
hashCode() - Method in class org.deeplearning4j.berkeley.Triple
 
hashCode() - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
hashCode() - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
hashCode() - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
hashCode() - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
hashCode() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
hashCode() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
hashCode() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
 
hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
 
hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
 
hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
 
hashCode() - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
hashCode() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
hashCode() - Method in class org.deeplearning4j.util.Index
 
hashCode() - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
HashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
hashSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
hasLayer() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
whether the GraphVertex contains a Layer object or not
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
hasMore() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Whether the dataset has more to load
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
hasNext() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns true if the priority queue is non-empty
hasNext() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Returns true if the iteration has more elements.
hasNext() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Returns true if the iteration has more elements.
hasNext() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
hBeta(INDArray, double) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
Computes a gaussian kernel given a vector of squared distance distances
hBeta(INDArray, double) - Method in class org.deeplearning4j.plot.Tsne
Computes a gaussian kernel given a vector of squared distance distances
head(int) - Method in class org.deeplearning4j.util.StringGrid
 
heapifyDown(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
heapifyUp(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
HeapItem - Class in org.deeplearning4j.clustering.sptree
 
HeapItem(int, double) - Constructor for class org.deeplearning4j.clustering.sptree.HeapItem
 
height - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
height - Static variable in class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
hexStringToByte(String) - Static method in class org.deeplearning4j.util.StringUtils
Given a hexstring this will return the byte array corresponding to the string
hiddenSigma - Variable in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
hiddenUnit(RBM.HiddenUnit) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
hiddenUnit - Variable in class org.deeplearning4j.nn.conf.layers.RBM
 
humanReadableInt(long) - Static method in class org.deeplearning4j.util.StringUtils
Given an integer, return a string that is in an approximate, but human readable format.
hypergeometric(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a hypergeometric distribution.
HyperRect - Class in org.deeplearning4j.clustering.kdtree
Created by agibsonccc on 12/29/14.
HyperRect(List<HyperRect.Interval>) - Constructor for class org.deeplearning4j.clustering.kdtree.HyperRect
 
HyperRect.Interval - Class in org.deeplearning4j.clustering.kdtree
 
hypotenuse(double, double) - Static method in class org.deeplearning4j.util.MathUtils
sqrt(a^2 + b^2) without under/overflow.

I

ia - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
IdentityHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
idf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Inverse document frequency: the total docs divided by the number of times the word appeared in a document
IEarlyStoppingTrainer<T extends Model> - Interface in org.deeplearning4j.earlystopping.trainer
Interface for early stopping trainers
ImageLoader - Class in org.deeplearning4j.util
Deprecated.
ImageLoader() - Constructor for class org.deeplearning4j.util.ImageLoader
Deprecated.
 
ImageLoader(int, int) - Constructor for class org.deeplearning4j.util.ImageLoader
Deprecated.
 
ImageRender - Class in org.deeplearning4j.plot
Render ndarrays as images
ImageRender() - Constructor for class org.deeplearning4j.plot.ImageRender
 
ImageVectorizer - Class in org.deeplearning4j.datasets.vectorizer
An image vectorizer takes an input image (RGB) and transforms it in to a data applyTransformToDestination
ImageVectorizer(File, int, int) - Constructor for class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Baseline knowledge needed for the vectorizer
incrementAll(Collection<? extends E>, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment each element in a given collection by a given amount.
incrementAll(Counter<T>) - Method in class org.deeplearning4j.berkeley.Counter
 
incrementAll(Map<K, V>, double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementAll(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment a key's count by the given amount.
incrementCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Increments the count for a particular (key, value) pair.
incrementFalseNegatives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementFalsePositives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementTrueNegatives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementTruePositives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
 
index - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
index - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
Index - Class in org.deeplearning4j.util
An index is a transform of objects augmented with a list and a reverse lookup table for fast lookups.
Index() - Constructor for class org.deeplearning4j.util.Index
 
indexOf(Object) - Method in class org.deeplearning4j.util.Index
 
information(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy for a given vector of probabilities.
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
Initialize the parameters
init() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Initialize the ComputationGraph network
init() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Initialize the MultiLayerNetwork.
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GRUParamInitializer
 
init(Map<String, INDArray>, NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
 
init() - Method in class org.deeplearning4j.nn.updater.AdaDeltaUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.AdaDeltaUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.AdaGradUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.AdaGradUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.AdamUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.AdamUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.BaseUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.NesterovsUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.NesterovsUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.NoOpUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.NoOpUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.RmsPropUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.RmsPropUpdater
 
init() - Method in class org.deeplearning4j.nn.updater.SgdUpdater
 
init(String, INDArray, Layer) - Method in class org.deeplearning4j.nn.updater.SgdUpdater
 
init() - Method in class org.deeplearning4j.plot.Tsne
 
initCalled - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
initCalled - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
initClusters() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
Initialize the cluster centers at random
initDone - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
initGradientsView() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
initGradientsView() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
initialClusterCount - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
initialize(ClusterSet, boolean) - Static method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
initialize() - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
 
initialize() - Method in interface org.deeplearning4j.earlystopping.termination.EpochTerminationCondition
Initialize the epoch termination condition (often a no-op)
initialize() - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
 
initialize() - Method in interface org.deeplearning4j.earlystopping.termination.IterationTerminationCondition
Initialize the iteration termination condition (sometimes a no-op)
initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
 
initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
 
initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
 
initialize() - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
 
initialize(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels from this dataset
initializeCurrFromList(List<DataSet>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Initializes this data transform fetcher from the passed in datasets
initializeLayers(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Base class for initializing the neuralNets based on the input.
initializer() - Method in interface org.deeplearning4j.nn.api.LayerFactory
Get the param initializer used for initializing layers
initializer() - Method in class org.deeplearning4j.nn.layers.factory.BatchNormalizationLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.ConvolutionLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.EmptyFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.GravesBidirectionalLSTMLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.GravesLSTMLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.GRULayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.PretrainLayerFactory
 
initializer() - Method in class org.deeplearning4j.nn.layers.factory.SubsampleLayerFactory
 
initialMomentum - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
initialMomentum - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
initialMomentum - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
initialMomentum - Variable in class org.deeplearning4j.plot.Tsne
 
initParams() - Method in interface org.deeplearning4j.nn.api.Model
Initialize the parameters
initParams() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
initParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
initParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
initParams() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
initWeights(int[], float, float) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
 
initWeights(int[], WeightInit, Distribution, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
Initializes a matrix with the given weight initialization scheme.
initWeights(int[], WeightInit, Distribution, char, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
 
initWeights(int, int, WeightInit, Distribution, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
Initializes a matrix with the given weight initialization scheme
inLayerName - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
InMemoryModelSaver<T extends Model> - Class in org.deeplearning4j.earlystopping.saver
Save the best (and latest) models for early stopping training to memory for later retrieval Note: Assumes that network is cloneable via .clone() method
InMemoryModelSaver() - Constructor for class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
input() - Method in interface org.deeplearning4j.nn.api.Model
The input/feature matrix for the model
input() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
input - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
input() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
input - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
input() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
input() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GRUParamInitializer
 
INPUT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
INPUT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
inputColumns() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
inputColumns - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
The length of a feature vector for an individual example
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Input columns for the dataset
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Input columns for the dataset
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
inputPreProcessor(String, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Specify the processors for a given layer These are used at each layer for doing things like normalization and shaping of input.
Note: preprocessors can also be defined using the ComputationGraphConfiguration.GraphBuilder.addLayer(String, Layer, InputPreProcessor, String...) method.
InputPreProcessor - Interface in org.deeplearning4j.nn.conf
Input pre processor used for pre processing input before passing it to the neural network.
inputPreProcessor(Integer, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Specify the processors.
inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
inputPreProcessors(Map<Integer, InputPreProcessor>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
inputs - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
InputSplit - Class in org.deeplearning4j.util
 
InputSplit() - Constructor for class org.deeplearning4j.util.InputSplit
 
inputStream - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
inputStreamFromPath(String) - Static method in class org.deeplearning4j.util.DeepLearningIOUtil
 
InputType - Class in org.deeplearning4j.nn.conf.inputs
The InputType class is used to track and define the types of activations etc used in a ComputationGraph.
InputType() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType
 
InputType.InputTypeConvolutional - Class in org.deeplearning4j.nn.conf.inputs
 
InputType.InputTypeFeedForward - Class in org.deeplearning4j.nn.conf.inputs
 
InputType.InputTypeRecurrent - Class in org.deeplearning4j.nn.conf.inputs
 
InputType.Type - Enum in org.deeplearning4j.nn.conf.inputs
The type of activations in/out of a given GraphVertex.
InputTypeConvolutional() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
 
InputTypeFeedForward() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
 
InputTypeRecurrent() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
 
InputVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
An InputVertex simply defines the location (and connection structure) of inputs to the ComputationGraph.
InputVertex(ComputationGraph, String, int, VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
inputVertices - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
A representation of the vertices that are inputs to this vertex (inputs during forward pass) Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z then the Zth output of vertex Y is the Xth input to this vertex
insert(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.KDTree
Insert a point in to the tree
insert(int) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Insert an index of the data in to the tree
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
Create a GraphVertex instance, for the given computation graph, given the configuration instance.
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
instantiate(ComputationGraph, String, int, INDArray) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
intersection(Collection<T>, Collection<T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intersectionP(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
Interval(double, double) - Constructor for class org.deeplearning4j.clustering.kdtree.HyperRect.Interval
 
intializeConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
intPow(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(float, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
intPow(double, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
exponentiation like we learned in grade school: multiply b by itself e times.
InvalidInputTypeException - Exception in org.deeplearning4j.nn.conf.inputs
InvalidInputTypeException: Thrown if the GraphVertex cannot handle the type of input provided.
InvalidInputTypeException(String) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
 
InvalidInputTypeException(String, Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
 
InvalidInputTypeException(Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
 
InvalidScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Terminate training at this iteration if score is NaN or Infinite for the last minibatch
InvalidScoreIterationTerminationCondition() - Constructor for class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
 
InvalidStepException - Exception in org.deeplearning4j.exception
Created by agibsonccc on 8/20/14.
InvalidStepException(String) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message.
InvalidStepException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message and cause.
InvalidStepException(Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString()) (which typically contains the class and detail message of cause).
InvalidStepException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
Constructs a new exception with the specified detail message, cause, suppression enabled or disabled, and writable stack trace enabled or disabled.
inverse(RBM.HiddenUnit) - Static method in class org.deeplearning4j.util.RBMUtil
 
inverse(RBM.VisibleUnit) - Static method in class org.deeplearning4j.util.RBMUtil
 
invert() - Method in class org.deeplearning4j.berkeley.CounterMap
Constructs reverse CounterMap where the count of a pair (k,v) is the count of (v,k) in the current CounterMap
invertDistanceMetric(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
invoke() - Method in interface org.deeplearning4j.optimize.api.IterationListener
Change invoke to true
invoke() - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
invoke() - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
 
invoke() - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
 
invoke() - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
invoke() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
invoked() - Method in interface org.deeplearning4j.optimize.api.IterationListener
Get if listener invoked
invoked() - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
invoked() - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
 
invoked() - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
 
invoked() - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
invoked() - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
iris() - Static method in class org.deeplearning4j.datasets.DataSets
 
iris(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
IrisDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
IrisDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
IrisDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
IrisDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator
IrisDataSetIterator handles traversing through the Iris Data Set.
IrisUtils - Class in org.deeplearning4j.base
 
IrisUtils() - Constructor for class org.deeplearning4j.base.IrisUtils
 
isAllowEmptyClusters() - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
isAllowEmptyClusters() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
isClusteringOptimizationType(ClusteringOptimizationType) - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
isCorrect() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Returns whether the tree is consistent or not
isCorrect() - Method in class org.deeplearning4j.clustering.sptree.SpTree
Verifies the structure of the tree (does bounds checking on each node)
isDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "dangerous" double to have around, namely one that is infinite, NaN or zero.
isDangerous(float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isDiscreteProb(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isEmpty() - Method in class org.deeplearning4j.berkeley.Counter
True if there are no entries in the counter (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.CounterMap
True if there are no entries in the CounterMap (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
isEmpty() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
True if the queue is empty (size == 0).
isEmpty() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
isEmpty() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map contains no key-value mappings.
isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains no elements.
isEqualTo(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
isEqualTo(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
isGreater(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
isInputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertex is an input vertex
isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
isInvert() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
isLeaf() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
isLeaf() - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
isLeaf() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns whether the node has any children or not
isNewLocation() - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
isOptimizationApplicableNow(IterationHistory) - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
isOptimizationApplicableNow(IterationHistory) - Method in class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
isOptimizationApplicableNow(IterationHistory) - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
isOptimizationDefined() - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
isOptimizationDefined() - Method in class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
isOptimizationDefined() - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
isOutputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertexis an output vertex
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
isPreTerminal() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Node has one child that is a leaf
isSatisfied(IterationHistory) - Method in interface org.deeplearning4j.clustering.algorithm.condition.ClusteringAlgorithmCondition
 
isSatisfied(IterationHistory) - Method in class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
 
isSatisfied(IterationHistory) - Method in class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
 
isSatisfied(IterationHistory) - Method in class org.deeplearning4j.clustering.algorithm.condition.VarianceVariationCondition
 
isStrategyApplied() - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
isStrategyOfType(ClusteringStrategyType) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
isStrategyOfType(ClusteringStrategyType) - Method in interface org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategy
 
isVeryDangerous(double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns true if the argument is a "very dangerous" double to have around, namely one that is infinite or NaN.
iter - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
iterate(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Run one iteration
iterate(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
iterate one iteration of the network
iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
iterate(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
iterate(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
iteration - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
iterationCountGreaterThan(int) - Static method in class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
 
iterationDone(Model, int) - Method in interface org.deeplearning4j.optimize.api.IterationListener
Event listener for each iteration
iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
 
iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
 
iterationDone(Model, int) - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
iterationDone(Model, int) - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
IterationHistory - Class in org.deeplearning4j.clustering.algorithm.iteration
 
IterationHistory() - Constructor for class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
IterationInfo - Class in org.deeplearning4j.clustering.algorithm.iteration
 
IterationInfo(int) - Constructor for class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
IterationInfo(int, ClusterSetInfo) - Constructor for class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
IterationListener - Interface in org.deeplearning4j.optimize.api
Each epoch the listener is called, mainly used for debugging or visualizations
iterationListener - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
iterationListener - Variable in class org.deeplearning4j.plot.Tsne
 
iterationListeners - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
iterationListeners - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
iterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Number of optimization iterations.
IterationTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
Interface for termination conditions to be evaluated once per iteration (i.e., once per minibatch).
iterationTerminationConditions(IterationTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Termination conditions to be evaluated every iteration (minibatch)
iterator() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
iterator() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an iterator over the elements in this applyTransformToDestination.
IteratorIterator(Iterator, Factory<Iterator<T>>) - Constructor for class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
Iterators - Class in org.deeplearning4j.berkeley
 
Iterators.FilteredIterator<T> - Class in org.deeplearning4j.berkeley
Creates an iterator that only returns items of a base iterator that pass a filter.
Iterators.IteratorIterator<T> - Class in org.deeplearning4j.berkeley
Wraps a two-level iteration scenario in an iterator.
Iterators.Transform<S,T> - Class in org.deeplearning4j.berkeley
WraTps a base iterator with a transformation function.
Iterators.TransformingIterator<I,O> - Class in org.deeplearning4j.berkeley
 
iz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 

J

join(Iterable, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the Collection with the given glue.
join(List<?>, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the List with the given glue.
join(Object[], String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins each elem in the array with the given glue.
join(List) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.
join(Object[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
Joins elems with a space.
join(CharSequence, Iterable<String>) - Static method in class org.deeplearning4j.util.StringUtils
Concatenates strings, using a separator.
joinObjects(CharSequence, Iterable<? extends Object>) - Static method in class org.deeplearning4j.util.StringUtils
Concatenates stringified objects, using a separator.

K

k(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
k - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
k(int) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
k - Variable in class org.deeplearning4j.nn.conf.layers.RBM
 
KDNode(INDArray) - Constructor for class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
KDTree - Class in org.deeplearning4j.clustering.kdtree
KDTree based on: https://github.com/nicky-zs/kdtree-python/blob/master/kdtree.py
KDTree(int) - Constructor for class org.deeplearning4j.clustering.kdtree.KDTree
 
KDTree.KDNode - Class in org.deeplearning4j.clustering.kdtree
 
keepBottomNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keepTopNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
kernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
Size of the convolution rows/columns
kernelSize - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
kernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
kernelSize - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
KernelValidationUtil - Class in org.deeplearning4j.nn.layers.convolution
Confirm calculations to reduce the shape of the input based on convolution or subsampling transformation
KernelValidationUtil() - Constructor for class org.deeplearning4j.nn.layers.convolution.KernelValidationUtil
 
key(String, Object...) - Method in class org.deeplearning4j.util.FingerPrintKeyer
 
keySet() - Method in class org.deeplearning4j.berkeley.Counter
The elements in the counter.
keySet() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the keys that have been inserted into this CounterMap.
keySet() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Set view of the keys contained in this map.
KMeansClustering - Class in org.deeplearning4j.clustering.kmeans
 
KMeansClustering(ClusteringStrategy) - Constructor for class org.deeplearning4j.clustering.kmeans.KMeansClustering
 
knn(INDArray, double) - Method in class org.deeplearning4j.clustering.kdtree.KDTree
 
kroneckerDelta(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the kronecker delta of two doubles.

L

l1 - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
l1(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
L1 regularization coefficient.
l1 - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
l1 - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
l1(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
L1 regularization coefficient.
l1ByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
l2 - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
l2(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
L2 regularization coefficient.
l2 - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
l2 - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
l2(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
L2 regularization coefficient.
l2ByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
label() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
labelIndex - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
labelIndexTo - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
labelProbabilities(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the probabilities for each label for each example row wise
labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Returns the probabilities for each label for each example row wise
labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns the probabilities for each label for each example row wise
labels - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
labels - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
labelsList - Variable in class org.deeplearning4j.eval.Evaluation
 
lambert(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
last - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
lastAct - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
lastChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
lastHeight - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
lastMemCell - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
lastnOut - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
lastOutChannels - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
LastTimeStepVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series) activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
LastTimeStepVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
LastTimeStepVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series) activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
LastTimeStepVertex(ComputationGraph, String, int, String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
LastTimeStepVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
lastWidth - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
Layer - Interface in org.deeplearning4j.nn.api
Interface for a layer of a neural network.
Layer - Class in org.deeplearning4j.nn.conf.layers
A neural network layer.
Layer(Layer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Layer
 
layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
layer(Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Layer class.
layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
layer(int, Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
Layer.Builder<T extends Layer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
Layer.TrainingMode - Enum in org.deeplearning4j.nn.api
 
Layer.Type - Enum in org.deeplearning4j.nn.api
 
layerConf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
layerConfig - Variable in class org.deeplearning4j.nn.layers.factory.DefaultLayerFactory
 
LayerFactories - Class in org.deeplearning4j.nn.layers.factory
Static method for finding which layer factory to use
LayerFactories() - Constructor for class org.deeplearning4j.nn.layers.factory.LayerFactories
 
LayerFactory - Interface in org.deeplearning4j.nn.api
Common interface for creating neural network layers.
layerIndex - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
layerMap - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
layers - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
A list of layers.
layers - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
LayerVertex - Class in org.deeplearning4j.nn.conf.graph
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an InputPreProcessor) in it
LayerVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.LayerVertex
 
LayerVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an InputPreProcessor) in it
LayerVertex(ComputationGraph, String, int, Layer, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
Create a network input vertex:
LayerVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], Layer, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
layerWiseConfigurations - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
LBFGS - Class in org.deeplearning4j.optimize.solvers
LBFGS
LBFGS(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LBFGS
 
LBFGS(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LBFGS
 
leakyreluAlpha - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
leakyreluAlpha(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
leakyreluAlpha - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
learningRate - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
learningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Learning rate.
learningRate - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
learningRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
learningRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Learning rate.
learningRate(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
learningRate - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
learningRate(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
learningRate - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
learningRate - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
learningRate(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
learningRate - Variable in class org.deeplearning4j.plot.Tsne
 
learningRateByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
learningRateDecayPolicy(LearningRatePolicy) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Learning rate decay policy.
learningRateDecayPolicy(LearningRatePolicy) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Learning rate decay policy.
learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
LearningRatePolicy - Enum in org.deeplearning4j.nn.conf
Learning Rate Policy How to decay learning rate during training.
learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
learningRateSchedule(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Learning rate schedule.
learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
learningRateSchedule(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Learning rate schedule.
learningRateScoreBasedDecayRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Rate to decrease learningRate by when the score stops improving.
leftChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
LegacyTsne - Class in org.deeplearning4j.plot
Deprecated.
LegacyTsne() - Constructor for class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
LegacyTsne(int, double, double, double, double, int, boolean, boolean, int, double, double, boolean, double, double) - Constructor for class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
LegacyTsne.Builder - Class in org.deeplearning4j.plot
Deprecated.
 
LESS - Static variable in class org.deeplearning4j.clustering.kdtree.KDTree
 
LexicographicPairComparator(Comparator<F>, Comparator<S>) - Constructor for class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
LFWDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
LFWDataSetIterator(int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int, int[], boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int[], boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int, int[], int, boolean, boolean, Random) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
LFWDataSetIterator(int, int, int[], int, boolean, PathLabelGenerator, double, boolean, Random) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
Create LFW data specific iterator
limitDecimalTo2(double) - Static method in class org.deeplearning4j.util.StringUtils
 
LineGradientDescent - Class in org.deeplearning4j.optimize.solvers
Stochastic Gradient Descent with Line Search
LineGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LineGradientDescent
 
LineGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LineGradientDescent
 
lineMaximizer - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
LineOptimizer - Interface in org.deeplearning4j.optimize.api
Line optimizer interface adapted from mallet
list(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Deprecated.
Manually specifying number of layers in is not necessary. Use NeuralNetConfiguration.Builder.list() or NeuralNetConfiguration.Builder.list(Layer...) methods.
list() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Create a ListBuilder (for creating a MultiLayerConfiguration)
Usage:
list(Layer...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Create a ListBuilder (for creating a MultiLayerConfiguration) with the specified layers
Usage:
ListBuilder(NeuralNetConfiguration.Builder, Map<Integer, NeuralNetConfiguration.Builder>) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
ListBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
ListDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Wraps a data applyTransformToDestination collection
ListDataSetIterator(Collection<DataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
ListDataSetIterator(Collection<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
Initializes with a batch of 5
listener(IterationListener...) - Method in class org.deeplearning4j.optimize.Solver.Builder
 
listeners - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
listeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.Solver.Builder
 
LoadAndDraw - Class in org.deeplearning4j.datasets.mnist.draw
 
LoadAndDraw() - Constructor for class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
loader - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
loadIris(int, int) - Static method in class org.deeplearning4j.base.IrisUtils
 
loadLayerParameters(Layer, String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Load existing parameters to the layer
loadNetworkAndParameters(String, String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Load existing model configuration and parameters
loadParameters(MultiLayerNetwork, int[], Map<Integer, String>) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Load existing parameters for the network
loadParameters(MultiLayerNetwork, String[], Map<String, String>) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Load existing parameters for the network
loadUpdators(String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Load model updators
LOCAL_DIR_NAME - Static variable in class org.deeplearning4j.base.MnistFetcher
 
LOCAL_DIR_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
LocalFileGraphSaver - Class in org.deeplearning4j.earlystopping.saver
Save the best (and latest/most recent) ComputationGraphs learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestGraphConf.json
(b) The network parameters: bestGraphParams.bin
(c) The network updater: bestGraphUpdater.bin

NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum and RMSProp.
The updater is not required to use the network at test time; it is saved in case further training is required.
LocalFileGraphSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
Constructor that uses default character set for configuration (json) encoding
LocalFileGraphSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
LocalFileModelSaver - Class in org.deeplearning4j.earlystopping.saver
Save the best (and latest/most recent) models learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestModelConf.json
(b) The network parameters: bestModelParams.bin
(c) The network updater: bestModelUpdater.bin

NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum and RMSProp.
The updater is not required to use the network at test time; it is saved in case further training is required.
LocalFileModelSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
Constructor that uses default character set for configuration (json) encoding
LocalFileModelSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
LocalResponseNormalization - Class in org.deeplearning4j.nn.conf.layers
Created by nyghtowl on 10/29/15.
LocalResponseNormalization - Class in org.deeplearning4j.nn.layers.normalization
Deep neural net normalization approach normalizes activations between layers "brightness normalization" Used for nets like AlexNet For a^i_{x,y} the activity of a neuron computed by applying kernel i at position (x,y) and applying ReLU nonlinearity, the response normalized activation b^i_{x,y} is given by: x^2 = (a^j_{x,y})^2 unitScale = (k + alpha * sum_{j=max(0, i - n/2)}^{max(N-1, i + n/2)} (a^j_{x,y})^2 ) y = b^i_{x,y} = x * unitScale**-beta gy = epsilon (aka deltas from previous layer) sumPart = sum(a^j_{x,y} * gb^j_{x,y}) gx = gy * unitScale**-beta - 2 * alpha * beta * sumPart/unitScale * a^i_{x,y} Reference: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf https://github.com/vlfeat/matconvnet/issues/10 Chainer Created by nyghtowl on 10/29/15.
LocalResponseNormalization(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
LocalResponseNormalization(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
LocalResponseNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
 
LocalUnstructuredDataFormatter - Class in org.deeplearning4j.datasets.rearrange
Rearrange an unstructured dataset in to split test/train on the file system
LocalUnstructuredDataFormatter(File, File, LocalUnstructuredDataFormatter.LabelingType, double) - Constructor for class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
LocalUnstructuredDataFormatter.LabelingType - Enum in org.deeplearning4j.datasets.rearrange
 
lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
lockGammaBeta(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
log - Static variable in class org.deeplearning4j.base.MnistFetcher
 
log - Static variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
log - Static variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
log - Static variable in class org.deeplearning4j.eval.Evaluation
 
log - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
log - Static variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
log2 - Static variable in class org.deeplearning4j.util.MathUtils
The natural logarithm of 2.
log2(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the logarithm of a for base 2.
logAdd(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(List<Double>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(float[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(double[], int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd(Counter<T>) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logAdd_Old(float[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logger - Static variable in class org.deeplearning4j.plot.Tsne
 
logNormalize(double[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
logs2probs(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities.
logSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
LOGTOLERANCE - Static variable in class org.deeplearning4j.berkeley.SloppyMath
If a difference is bigger than this in log terms, then the sum or difference of them will just be the larger (to 12 or so decimal places for double, and 7 or 8 for float).
longestCommonSubstring(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the longest common substring of s and t.
lookingAt(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found at the beginning of this String.
lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
 
lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
 
lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
 
lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
 
lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
 
lrPolicyDecayRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
lrPolicyDecayRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Set the decay rate for the learning rate decay policy.
lrPolicyDecayRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
lrPolicyPower - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
lrPolicyPower(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Set the power used for learning rate inverse policy.
lrPolicyPower - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
lrPolicySteps - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
lrPolicySteps(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Set the number of steps used for learning decay rate steps policy.
lrPolicySteps - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
lrScoreBasedDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
LSTMHelpers - Class in org.deeplearning4j.nn.layers.recurrent
RNN tutorial: http://deeplearning4j.org/usingrnns.html READ THIS FIRST if you want to understand what the heck is happening here.
LSTMHelpers() - Constructor for class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
 

M

main(String[]) - Static method in class org.deeplearning4j.berkeley.Counter
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.CounterMap
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.PriorityQueue
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Tests the hypergeometric distribution code, or other cooccurrences provided in this module.
main(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
main(String[]) - Static method in class org.deeplearning4j.datasets.creator.MnistDataSetCreator
 
main(String[]) - Static method in class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
main(String[]) - Static method in class org.deeplearning4j.eval.ConfusionMatrix
 
makePair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
makeTriple(S, T, U) - Static method in class org.deeplearning4j.berkeley.Triple
 
man - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
manhattanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will calculate the Manhattan distance between two sets of points.
mapByPrimaryKey(int) - Method in class org.deeplearning4j.util.StringGrid
 
MapFactory<K,V> - Class in org.deeplearning4j.berkeley
The MapFactory is a mechanism for specifying what kind of map is to be used by some object.
MapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory
 
MapFactory.HashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.IdentityHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.TreeMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.WeakHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
mapper() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Object mapper for serialization of configurations
mapperYaml() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Object mapper for serialization of configurations
mask - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
maskArray - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
MASTER_PATH - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
MASTER_URL - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
matches(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression matches this String.
MathUtils - Class in org.deeplearning4j.util
This is a math utils class.
MathUtils() - Constructor for class org.deeplearning4j.util.MathUtils
 
max() - Method in class org.deeplearning4j.berkeley.Counter
 
max(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
max(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two float values.
max(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the greater of two double values.
max(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
MaxEpochsTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Terminate training if the number of epochs exceeds the maximum number of epochs
MaxEpochsTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
 
maxIndex(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns index of maximum element in a given array of doubles.
maxIter - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
maxIter - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
maxIter - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
maxIter - Variable in class org.deeplearning4j.plot.Tsne
 
maxLengthIterator(Iterator<T>, int) - Static method in class org.deeplearning4j.berkeley.Iterators
Provides a max number of elements for an underlying base iterator.
maxNumBatches - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
maxNumLineSearchIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Maximum number of line search iterations.
maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
MaxScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Iteration termination condition for terminating training if the minibatch score exceeds a certain value.
MaxScoreIterationTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
 
MaxTimeIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Terminate training based on max time.
MaxTimeIterationTerminationCondition(long, TimeUnit) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
 
mean - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
mean(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Computes the mean for an array of doubles.
meanAbsoluteError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
meanSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
memCellActivations - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
memCellState - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
merge(Evaluation) - Method in class org.deeplearning4j.eval.Evaluation
Merge the other evaluation object into this one.
merge(Layer, int) - Method in interface org.deeplearning4j.nn.api.Layer
Parameter averaging
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Averages the given logistic regression from a mini batch into this layer
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
merge(Layer, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Averages the given logistic regression from a mini batch in to this one
merge(MultiLayerNetwork, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Merges this network with the other one.
merge(UpdaterAggregator) - Method in interface org.deeplearning4j.nn.updater.aggregate.UpdaterAggregator
 
merge(UpdaterAggregator) - Method in class org.deeplearning4j.nn.updater.BaseUpdater.UpdaterAggregatorImpl
 
merge(ComputationGraphUpdater.Aggregator) - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater.Aggregator
Merge a specified aggregator into this one
merge(UpdaterAggregator) - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater.MultiLayerUpdaterAggregator
 
merge(int, int) - Method in class org.deeplearning4j.util.StringGrid
 
mergeCoords(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
mergeCoords(List<Double>, List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
MergeVertex - Class in org.deeplearning4j.nn.conf.graph
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength]) -> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height]) -> [numExamples,depth1 + depth2,width,height]
MergeVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.MergeVertex
 
MergeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength]) -> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height]) -> [numExamples,depth1 + depth2,width,height]
MergeVertex(ComputationGraph, String, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
MergeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
min() - Method in class org.deeplearning4j.berkeley.Counter
 
min(int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the minimum of three int values.
min(float, float) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two float values.
min(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Returns the smaller of two double values.
min(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
minDistance(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
minGain(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
minGain - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
minGain(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
minGain - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
minGain - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
minGain(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
minGain - Variable in class org.deeplearning4j.plot.Tsne
 
miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
miniBatch(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Process input as minibatch vs full dataset.
miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
minimize(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Objective function to minimize or maximize cost function Default set to minimize true.
minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
mnist() - Static method in class org.deeplearning4j.datasets.DataSets
 
mnist(int) - Static method in class org.deeplearning4j.datasets.DataSets
 
MNIST_ROOT - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the MNIST dataset
MnistDataFetcher(boolean) - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
Constructor telling whether to binarize the dataset or not
MnistDataFetcher(boolean, boolean, boolean, long) - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataSetCreator - Class in org.deeplearning4j.datasets.creator
 
MnistDataSetCreator() - Constructor for class org.deeplearning4j.datasets.creator.MnistDataSetCreator
 
MnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Mnist data applyTransformToDestination iterator.
MnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
 
MnistDataSetIterator(int, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
Get the specified number of examples for the MNIST training data set.
MnistDataSetIterator(int, boolean, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
Constructor to get the full MNIST data set (either test or train sets) without binarization (i.e., just normalization into range of 0 to 1), with shuffling based on a random seed.
MnistDataSetIterator(int, int, boolean, boolean, boolean, long) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
Get the specified number of MNIST examples (test or train set), with optional shuffling and binarization.
MnistDbFile - Class in org.deeplearning4j.datasets.mnist
MNIST database file containing entries that can represent image or label data.
MnistDbFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistDbFile
Creates new instance and reads the header information.
MnistFetcher - Class in org.deeplearning4j.base
 
MnistFetcher() - Constructor for class org.deeplearning4j.base.MnistFetcher
 
MnistImageFile - Class in org.deeplearning4j.datasets.mnist
MNIST database image file.
MnistImageFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistImageFile
Creates new MNIST database image file ready for reading.
MnistLabelFile - Class in org.deeplearning4j.datasets.mnist
MNIST database label file.
MnistLabelFile(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistLabelFile
Creates new MNIST database label file ready for reading.
MnistManager - Class in org.deeplearning4j.datasets.mnist
Utility class for working with the MNIST database.
MnistManager(String, String, boolean) - Constructor for class org.deeplearning4j.datasets.mnist.MnistManager
Constructs an instance managing the two given data files.
MnistManager(String, String) - Constructor for class org.deeplearning4j.datasets.mnist.MnistManager
 
model - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
Model - Interface in org.deeplearning4j.nn.api
A Model is meant for predicting something from data.
model(Model) - Method in class org.deeplearning4j.optimize.Solver.Builder
 
model - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
modelSaver(EarlyStoppingModelSaver<T>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
How should models be saved? (Default: in memory)
ModelSerializer - Class in org.deeplearning4j.util
Utility class suited to save/restore neural net models
ModelSerializer() - Constructor for class org.deeplearning4j.util.ModelSerializer
 
momentum - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
momentum(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Momentum rate.
momentum - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
momentum - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
momentum(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Momentum rate.
momentum - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
momentum - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
momentum - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
momentum - Variable in class org.deeplearning4j.plot.Tsne
 
momentumAfter - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
momentumAfter(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Momentum schedule.
momentumAfter(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Momentum schedule.
momentumSchedule - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
momentumSchedule - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
mostLikelyInSequence(INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
movingAverage(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
Calculate a moving average given the length
MovingWindowBaseDataSetIterator - Class in org.deeplearning4j.datasets.iterator
DataSetIterator for moving window (rotating matrices)
MovingWindowBaseDataSetIterator(int, int, DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.MovingWindowBaseDataSetIterator
 
MovingWindowDataSetFetcher - Class in org.deeplearning4j.datasets.iterator.impl
Moving window data fetcher.
MovingWindowDataSetFetcher(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
 
MovingWindowMatrix - Class in org.deeplearning4j.util
Moving window on a matrix (usually used for images) Given a: This is a list of flattened arrays: 1 1 1 1 1 1 2 2 2 2 2 2 ----> 1 1 2 2 3 3 3 3 3 3 4 4 4 4 4 4 3 3 4 4
MovingWindowMatrix(INDArray, int, int, boolean) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
 
MovingWindowMatrix(INDArray, int, int) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
Same as calling new MovingWindowMatrix(toSlice,windowRowSize,windowColumnSize,false)
MULTI_LAYER_CONF - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
MultiDimensionalMap<K,T,V> - Class in org.deeplearning4j.util
Multiple key map
MultiDimensionalMap(Map<Pair<K, T>, V>) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap
 
MultiDimensionalMap.Entry<K,T,V> - Class in org.deeplearning4j.util
 
MultiDimensionalSet<K,V> - Class in org.deeplearning4j.util
Created by agibsonccc on 4/29/14.
MultiDimensionalSet(Set<Pair<K, V>>) - Constructor for class org.deeplearning4j.util.MultiDimensionalSet
 
MultiLayerConfiguration - Class in org.deeplearning4j.nn.conf
Configuration for a multi layer network
MultiLayerConfiguration() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
MultiLayerConfiguration.Builder - Class in org.deeplearning4j.nn.conf
 
MultiLayerNetwork - Class in org.deeplearning4j.nn.multilayer
A base class for a multi layer neural network with a logistic output layer and multiple hidden neuralNets.
MultiLayerNetwork(MultiLayerConfiguration) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
MultiLayerNetwork(String, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Initialize the network based on the configuration
MultiLayerNetwork(MultiLayerConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Initialize the network based on the configuraiton
MultiLayerNetworkReconstructionRender - Class in org.deeplearning4j.plot
Reconstruction renders for a multi layer network
MultiLayerNetworkReconstructionRender(DataSetIterator, MultiLayerNetwork, int) - Constructor for class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
MultiLayerNetworkReconstructionRender(DataSetIterator, MultiLayerNetwork) - Constructor for class org.deeplearning4j.plot.MultiLayerNetworkReconstructionRender
 
MultiLayerUpdater - Class in org.deeplearning4j.nn.updater
MultiLayerUpdater: Gradient updater for MultiLayerNetworks.
MultiLayerUpdater(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
MultiLayerUpdater(MultiLayerUpdater) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
MultiLayerUpdater.MultiLayerUpdaterAggregator - Class in org.deeplearning4j.nn.updater
 
MultiLayerUpdaterAggregator() - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater.MultiLayerUpdaterAggregator
 
MultiLayerUtil - Class in org.deeplearning4j.util
Various cooccurrences for manipulating a multi layer network
MultiLayerUtil() - Constructor for class org.deeplearning4j.util.MultiLayerUtil
 
MultipleEpochsIterator - Class in org.deeplearning4j.datasets.iterator
A dataset iterator for doing multiple passes over a dataset
MultipleEpochsIterator(int, DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
MultipleEpochsIterator(int, DataSet) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
MultiThreadUtils - Class in org.deeplearning4j.util
 
MultiThreadUtils() - Constructor for class org.deeplearning4j.util.MultiThreadUtils
 
MyMethod<I,O> - Interface in org.deeplearning4j.berkeley
A function wrapping interface.

N

n(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
 
n - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
name(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Layer name assigns layer string name.
NAME_SPACE - Static variable in interface org.deeplearning4j.datasets.creator.DataSetIteratorFactory
 
nChooseK(int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Computes n choose k in an efficient way.
nearestCluster(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
negative() - Method in class org.deeplearning4j.eval.Evaluation
Total negatives true negatives + false negatives
NegativeDefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
Inverse step function
NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
 
NegativeDefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Inverse step function
NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
NegativeGradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
Subtract the line
NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
 
NegativeGradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
Subtract the line
NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
 
NesterovsAggregator() - Constructor for class org.deeplearning4j.nn.updater.NesterovsUpdater.NesterovsAggregator
 
NesterovsUpdater - Class in org.deeplearning4j.nn.updater
 
NesterovsUpdater() - Constructor for class org.deeplearning4j.nn.updater.NesterovsUpdater
 
NesterovsUpdater.NesterovsAggregator - Class in org.deeplearning4j.nn.updater
 
NetSaverLoaderUtils - Class in org.deeplearning4j.util
Utility to save and load network configuration and parameters.
networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
List of inputs to the network, by name
networkInputTypes - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
List of network outputs, by name
NEURAL_NET_CONF - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
NeuralNetConfiguration - Class in org.deeplearning4j.nn.conf
A Serializable configuration for neural nets that covers per layer parameters
NeuralNetConfiguration() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
NeuralNetConfiguration.Builder - Class in org.deeplearning4j.nn.conf
 
NeuralNetConfiguration.ListBuilder - Class in org.deeplearning4j.nn.conf
Fluent interface for building a list of configurations
NeuralNetworkReconstructionRender - Class in org.deeplearning4j.plot
Neural Network reconstruction renderer
NeuralNetworkReconstructionRender(DataSetIterator, Layer) - Constructor for class org.deeplearning4j.plot.NeuralNetworkReconstructionRender
 
newExecutorService() - Static method in class org.deeplearning4j.util.MultiThreadUtils
 
newHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe hash map impl
newInstance(Object...) - Method in class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
newInstance(Object...) - Method in interface org.deeplearning4j.berkeley.Factory
 
newInstance(Class<T>, Configuration) - Static method in class org.deeplearning4j.util.ReflectionUtils
Create an object for the given class and initialize it from conf
newIterable(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
newPair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
newThreadSafeHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe hash map implementation
newThreadSafeTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Thread safe sorted map implementation
newTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
Tree map implementation
next() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
next() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
next() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the element in the queue with highest priority, and pops it from the queue.
next(int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Returns the next data applyTransformToDestination
next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Like the standard next method but allows a customizable number of examples returned
next() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Like the standard next method but allows a customizable number of examples returned
next() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Returns the next element in the iteration.
next() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the next entry.
next() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
next(int) - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
nextImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the next image.
nextList(List<Iterator<T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
nextPowOf2(long) - Static method in class org.deeplearning4j.util.MathUtils
See: http://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2
nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
 
nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
 
nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
 
nInsPerLayer - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
nn(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.KDTree
Query for nearest neighbor.
Node(int, double) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree.Node
 
NODE_RATIO - Static variable in class org.deeplearning4j.clustering.sptree.SpTree
 
noNaNDivide(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
NONE - Static variable in class org.deeplearning4j.util.StringGrid
 
NoOpAggregator() - Constructor for class org.deeplearning4j.nn.updater.NoOpUpdater.NoOpAggregator
 
NoOpUpdater - Class in org.deeplearning4j.nn.updater
 
NoOpUpdater() - Constructor for class org.deeplearning4j.nn.updater.NoOpUpdater
 
NoOpUpdater.NoOpAggregator - Class in org.deeplearning4j.nn.updater
 
Norm2Termination - Class in org.deeplearning4j.optimize.terminations
Terminate if the norm2 of the gradient is < a certain tolerance
Norm2Termination(double) - Constructor for class org.deeplearning4j.optimize.terminations.Norm2Termination
 
NormalDistribution - Class in org.deeplearning4j.nn.conf.distribution
A normal distribution.
NormalDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.NormalDistribution
Create a normal distribution with the given mean and std
normalize() - Method in class org.deeplearning4j.berkeley.Counter
Destructively normalize this Counter in place.
normalize() - Method in class org.deeplearning4j.berkeley.CounterMap
 
normalize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
Normalize the input image by row sums
normalize(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
normalize - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
normalize(boolean) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
normalize - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
normalize - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
normalize(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
normalize - Variable in class org.deeplearning4j.plot.Tsne
 
normalize(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Normalize a value (val - min) / (max - min)
normalize(double[], double) - Static method in class org.deeplearning4j.util.MathUtils
Normalizes the doubles in the array using the given value.
normalizeToOne(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
normalizeWithDiscount(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
notOvershot - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
 
nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
 
nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
 
nOutsPerLayer - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
nthIndex(String, char, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns the index of the nth occurrence of ch in s, or -1 if there are less than n occurrences of ch.
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
NUM_EXAMPLES_TEST - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
NUM_PASSES - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
numChannels(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
Returns the number of feature maps for a given shape (must be at least 3 dimensions
numColumns() - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
numExamples() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
numExamples - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples - Variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Total number of examples in the dataset
numExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Total number of examples in the dataset
numExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
numFeatureMap(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
 
numIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
numIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
numLabels() - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the number of possible labels
numLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Returns the number of possible labels
numLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns the number of possible labels
numLayers - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
numOutcomes - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
numParams() - Method in interface org.deeplearning4j.nn.api.Model
the number of parameters for the model
numParams(boolean) - Method in interface org.deeplearning4j.nn.api.Model
the number of parameters for the model
numParams(NeuralNetConfiguration, boolean) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
numParams() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
numParams(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
numParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
The number of parameters for the model
numParams(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
numParams(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
numParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
numParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the weights for the various neuralNets and output layer
numParams(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.GRUParamInitializer
 
numParams(NeuralNetConfiguration, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
 
numParams() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
numParams(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
numParamsBackprop() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
The number of parameters for the model, for backprop (i.e., excluding visible bias)
numPasses - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
numPixels - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
numPossibleLabels - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
numRowCounter - Variable in class org.deeplearning4j.eval.Evaluation
 

O

oa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
objectIterator(ObjectInputStream) - Static method in class org.deeplearning4j.berkeley.Iterators
 
offer(E) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
oldScore - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
onCompletion(EarlyStoppingResult<T>) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
Method that is called at the end of early stopping training
oneItemIterator(U) - Static method in class org.deeplearning4j.berkeley.Iterators
 
onEpoch(int, double, EarlyStoppingConfiguration<T>, T) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
Method that is called at the end of each epoch completed during early stopping training
oneTailedFishersExact(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a one-tailed Fisher's exact probability.
onStart(EarlyStoppingConfiguration<T>, T) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
Method to be called when early stopping training is first started
op - Variable in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
OptimisationStrategy - Class in org.deeplearning4j.clustering.algorithm.strategy
 
OptimisationStrategy(int, String) - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
optimizationAlgo - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
optimizationAlgo(OptimizationAlgorithm) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
optimizationAlgo - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
OptimizationAlgorithm - Enum in org.deeplearning4j.nn.api
Optimization algorithm to use
optimizationPhaseCondition - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
optimize() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
optimize(ClusteringOptimizationType, double) - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
optimize() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Calls optimize
optimize(INDArray, INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.api.LineOptimizer
Line optimizer
optimize() - Method in class org.deeplearning4j.optimize.Solver
 
optimize(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
optimize() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
Optimize call.
optimize() - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
 
optimizer - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
optimizeWhenIterationCountMultipleOf(int) - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
optimizeWhenPointDistributionVariationRateLessThan(double) - Method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
order - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
org.deeplearning4j.base - package org.deeplearning4j.base
 
org.deeplearning4j.berkeley - package org.deeplearning4j.berkeley
 
org.deeplearning4j.clustering.algorithm - package org.deeplearning4j.clustering.algorithm
 
org.deeplearning4j.clustering.algorithm.condition - package org.deeplearning4j.clustering.algorithm.condition
 
org.deeplearning4j.clustering.algorithm.iteration - package org.deeplearning4j.clustering.algorithm.iteration
 
org.deeplearning4j.clustering.algorithm.optimisation - package org.deeplearning4j.clustering.algorithm.optimisation
 
org.deeplearning4j.clustering.algorithm.strategy - package org.deeplearning4j.clustering.algorithm.strategy
 
org.deeplearning4j.clustering.cluster - package org.deeplearning4j.clustering.cluster
 
org.deeplearning4j.clustering.cluster.info - package org.deeplearning4j.clustering.cluster.info
 
org.deeplearning4j.clustering.kdtree - package org.deeplearning4j.clustering.kdtree
 
org.deeplearning4j.clustering.kmeans - package org.deeplearning4j.clustering.kmeans
 
org.deeplearning4j.clustering.quadtree - package org.deeplearning4j.clustering.quadtree
 
org.deeplearning4j.clustering.sptree - package org.deeplearning4j.clustering.sptree
 
org.deeplearning4j.clustering.vptree - package org.deeplearning4j.clustering.vptree
Created by agibsonccc on 1/3/15.
org.deeplearning4j.datasets - package org.deeplearning4j.datasets
 
org.deeplearning4j.datasets.canova - package org.deeplearning4j.datasets.canova
 
org.deeplearning4j.datasets.creator - package org.deeplearning4j.datasets.creator
 
org.deeplearning4j.datasets.fetchers - package org.deeplearning4j.datasets.fetchers
 
org.deeplearning4j.datasets.iterator - package org.deeplearning4j.datasets.iterator
 
org.deeplearning4j.datasets.iterator.impl - package org.deeplearning4j.datasets.iterator.impl
 
org.deeplearning4j.datasets.mnist - package org.deeplearning4j.datasets.mnist
 
org.deeplearning4j.datasets.mnist.draw - package org.deeplearning4j.datasets.mnist.draw
 
org.deeplearning4j.datasets.rearrange - package org.deeplearning4j.datasets.rearrange
 
org.deeplearning4j.datasets.test - package org.deeplearning4j.datasets.test
 
org.deeplearning4j.datasets.vectorizer - package org.deeplearning4j.datasets.vectorizer
 
org.deeplearning4j.earlystopping - package org.deeplearning4j.earlystopping
 
org.deeplearning4j.earlystopping.listener - package org.deeplearning4j.earlystopping.listener
 
org.deeplearning4j.earlystopping.saver - package org.deeplearning4j.earlystopping.saver
 
org.deeplearning4j.earlystopping.scorecalc - package org.deeplearning4j.earlystopping.scorecalc
 
org.deeplearning4j.earlystopping.termination - package org.deeplearning4j.earlystopping.termination
 
org.deeplearning4j.earlystopping.trainer - package org.deeplearning4j.earlystopping.trainer
 
org.deeplearning4j.eval - package org.deeplearning4j.eval
 
org.deeplearning4j.exception - package org.deeplearning4j.exception
 
org.deeplearning4j.gradientcheck - package org.deeplearning4j.gradientcheck
 
org.deeplearning4j.nn.api - package org.deeplearning4j.nn.api
 
org.deeplearning4j.nn.conf - package org.deeplearning4j.nn.conf
 
org.deeplearning4j.nn.conf.distribution - package org.deeplearning4j.nn.conf.distribution
 
org.deeplearning4j.nn.conf.graph - package org.deeplearning4j.nn.conf.graph
 
org.deeplearning4j.nn.conf.graph.rnn - package org.deeplearning4j.nn.conf.graph.rnn
 
org.deeplearning4j.nn.conf.inputs - package org.deeplearning4j.nn.conf.inputs
 
org.deeplearning4j.nn.conf.layers - package org.deeplearning4j.nn.conf.layers
 
org.deeplearning4j.nn.conf.layers.setup - package org.deeplearning4j.nn.conf.layers.setup
 
org.deeplearning4j.nn.conf.preprocessor - package org.deeplearning4j.nn.conf.preprocessor
 
org.deeplearning4j.nn.conf.stepfunctions - package org.deeplearning4j.nn.conf.stepfunctions
 
org.deeplearning4j.nn.gradient - package org.deeplearning4j.nn.gradient
 
org.deeplearning4j.nn.graph - package org.deeplearning4j.nn.graph
 
org.deeplearning4j.nn.graph.util - package org.deeplearning4j.nn.graph.util
 
org.deeplearning4j.nn.graph.vertex - package org.deeplearning4j.nn.graph.vertex
 
org.deeplearning4j.nn.graph.vertex.impl - package org.deeplearning4j.nn.graph.vertex.impl
 
org.deeplearning4j.nn.graph.vertex.impl.rnn - package org.deeplearning4j.nn.graph.vertex.impl.rnn
 
org.deeplearning4j.nn.layers - package org.deeplearning4j.nn.layers
 
org.deeplearning4j.nn.layers.convolution - package org.deeplearning4j.nn.layers.convolution
 
org.deeplearning4j.nn.layers.convolution.subsampling - package org.deeplearning4j.nn.layers.convolution.subsampling
 
org.deeplearning4j.nn.layers.factory - package org.deeplearning4j.nn.layers.factory
 
org.deeplearning4j.nn.layers.feedforward.autoencoder - package org.deeplearning4j.nn.layers.feedforward.autoencoder
 
org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive - package org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive
 
org.deeplearning4j.nn.layers.feedforward.dense - package org.deeplearning4j.nn.layers.feedforward.dense
 
org.deeplearning4j.nn.layers.feedforward.embedding - package org.deeplearning4j.nn.layers.feedforward.embedding
 
org.deeplearning4j.nn.layers.feedforward.rbm - package org.deeplearning4j.nn.layers.feedforward.rbm
 
org.deeplearning4j.nn.layers.normalization - package org.deeplearning4j.nn.layers.normalization
 
org.deeplearning4j.nn.layers.recurrent - package org.deeplearning4j.nn.layers.recurrent
 
org.deeplearning4j.nn.multilayer - package org.deeplearning4j.nn.multilayer
 
org.deeplearning4j.nn.params - package org.deeplearning4j.nn.params
 
org.deeplearning4j.nn.updater - package org.deeplearning4j.nn.updater
 
org.deeplearning4j.nn.updater.aggregate - package org.deeplearning4j.nn.updater.aggregate
 
org.deeplearning4j.nn.updater.graph - package org.deeplearning4j.nn.updater.graph
 
org.deeplearning4j.nn.weights - package org.deeplearning4j.nn.weights
 
org.deeplearning4j.optimize - package org.deeplearning4j.optimize
 
org.deeplearning4j.optimize.api - package org.deeplearning4j.optimize.api
 
org.deeplearning4j.optimize.listeners - package org.deeplearning4j.optimize.listeners
 
org.deeplearning4j.optimize.solvers - package org.deeplearning4j.optimize.solvers
 
org.deeplearning4j.optimize.stepfunctions - package org.deeplearning4j.optimize.stepfunctions
 
org.deeplearning4j.optimize.terminations - package org.deeplearning4j.optimize.terminations
 
org.deeplearning4j.plot - package org.deeplearning4j.plot
 
org.deeplearning4j.plot.iterationlistener - package org.deeplearning4j.plot.iterationlistener
 
org.deeplearning4j.ui - package org.deeplearning4j.ui
 
org.deeplearning4j.util - package org.deeplearning4j.util
 
outLayerName - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
output(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Return an array of network outputs (predictions) at test time, given the specified network inputs Network outputs are for output layers only.
output(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Return an array of network outputs (predictions), given the specified network inputs Network outputs are for output layers only.
output(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
output(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
output(boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Classify input
output(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
output(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
output(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Label the probabilities of the input
output(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Label the probabilities of the input
output(INDArray, boolean, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate the output of the network, with masking arrays.
output(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Label the probabilities of the input
output2d(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
output2d(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
OutputLayer - Class in org.deeplearning4j.nn.conf.layers
Output layer with different objective co-occurrences for different objectives.
OutputLayer(OutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer
 
OutputLayer - Class in org.deeplearning4j.nn.layers
Output layer with different objective incooccurrences for different objectives.
OutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.OutputLayer
 
OutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.OutputLayer
 
OutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
outputVertices - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
A representation of the vertices that this vertex is connected to (outputs duing forward pass) Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z then the output of this vertex (there is only one output) is connected to the Zth input of vertex Y

P

pack() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Packs a set of matrices in to one vector, where the matrices in this case are the w,hbias at each layer and the output layer w,bias
pack(List<Pair<INDArray, INDArray>>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Packs a set of matrices in to one vector
pad(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Return a String of length a minimum of totalChars characters by padding the input String str with spaces.
pad(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the toString value of the given Object.
padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
padding - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
padding - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
padLeft(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pads the given String to the left with spaces to ensure that it's at least totalChars long.
padLeft(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padLeft(double, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
padOrTrim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim so as to produce a string of exactly a certain length.
padOrTrim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Pad or trim the toString value of the given Object.
paintComponent(Graphics) - Method in class org.deeplearning4j.plot.FilterPanel
 
Pair<F,S> - Class in org.deeplearning4j.berkeley
A generic-typed pair of objects.
Pair(F, S) - Constructor for class org.deeplearning4j.berkeley.Pair
 
Pair.DefaultLexicographicPairComparator<F extends Comparable<F>,S extends Comparable<S>> - Class in org.deeplearning4j.berkeley
 
Pair.FirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.LexicographicPairComparator<F,S> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseFirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseSecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.SecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
parallelCounterMap() - Static method in class org.deeplearning4j.berkeley.CounterMap
Returns a thread safe counter map
parallelTasks(List<Runnable>, ExecutorService) - Static method in class org.deeplearning4j.util.MultiThreadUtils
 
ParamAndGradientIterationListener - Class in org.deeplearning4j.optimize.listeners
An iteration listener that provides details on parameters and gradients at each iteration during traning.
ParamAndGradientIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
Default constructor for output to console only every iteration, tab delimited
ParamAndGradientIterationListener(int, boolean, boolean, boolean, boolean, boolean, boolean, boolean, File, String) - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
Full constructor with all options.
ParamInitializer - Interface in org.deeplearning4j.nn.api
Param initializer for a layer
params() - Method in interface org.deeplearning4j.nn.api.Model
Parameters of the model (if any)
params(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the parameters for the ComputationGraph
params() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
params() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
params - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
params() - Method in class org.deeplearning4j.nn.layers.BaseLayer
Returns the parameters of the neural network as a flattened row vector
params() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
params() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
params() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
params(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the weights for the various neuralNets(w,hbias NOT VBIAS) and output layer
params() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the weights for the various neuralNets(w,hbias NOT VBIAS) and output layer
params() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
PARAMS_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
paramsBackprop() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
paramsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
paramTable() - Method in interface org.deeplearning4j.nn.api.Model
The param table
paramTable() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
paramTable() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
paramTable() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
paramTable() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
parent(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
parent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns the parent of the passed in tree via traversal
parent() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
parse(String, Class<E>) - Static method in class org.deeplearning4j.util.EnumUtil
 
parseCommandLineArguments(String[]) - Static method in class org.deeplearning4j.berkeley.StringUtils
A simpler form of command line argument parsing.
partitionVariable(List<Double>, int) - Static method in class org.deeplearning4j.util.MathUtils
This will partition the given whole variable data applyTransformToDestination in to the specified chunk number.
passes - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
peek() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
peek() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the highest-priority element in the queue, but does not pop it.
peek() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
pennPOSToWordnetPOS(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Computes the WordNet 2.0 POS tag corresponding to the PTB POS tag s.
permutation(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the permutation of n choose r.
perplexity(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
perplexity - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
perplexity(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
perplexity - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
perplexity - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
perplexity(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
perplexity - Variable in class org.deeplearning4j.plot.Tsne
 
plot(INDArray, int, List<String>, String) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Plot tsne
plot(INDArray, int, List<String>) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
Plot tsne (write the coordinates file)
plot(INDArray, int, List<String>, String) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
Plot tsne
plot() - Method in class org.deeplearning4j.plot.PlotFilters
Plot the image
plot(INDArray, int, List<String>, String) - Method in class org.deeplearning4j.plot.Tsne
 
PlotFilters - Class in org.deeplearning4j.plot
Based on the work by krizshevy et.
PlotFilters(INDArray, int[], int[], int[]) - Constructor for class org.deeplearning4j.plot.PlotFilters
 
PlotFiltersIterationListener - Class in org.deeplearning4j.plot.iterationlistener
 
PlotFiltersIterationListener(PlotFilters, List<String>, int) - Constructor for class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
Point - Class in org.deeplearning4j.clustering.cluster
 
Point(INDArray) - Constructor for class org.deeplearning4j.clustering.cluster.Point
 
Point(String, INDArray) - Constructor for class org.deeplearning4j.clustering.cluster.Point
 
Point(String, String, double[]) - Constructor for class org.deeplearning4j.clustering.cluster.Point
 
Point(String, String, INDArray) - Constructor for class org.deeplearning4j.clustering.cluster.Point
 
point(INDArray) - Static method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
PointClassification - Class in org.deeplearning4j.clustering.cluster
 
PointClassification(Cluster, double, boolean) - Constructor for class org.deeplearning4j.clustering.cluster.PointClassification
 
poll() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
poolingType(SubsamplingLayer.PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
poolingType - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
positive() - Method in class org.deeplearning4j.eval.Evaluation
Returns all of the positive guesses: true positive + false negative
postApply(Layer, INDArray, String, int) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
Apply the regularization
postFirstStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
postStep(INDArray) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
After the step has been made, do an action
postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
Post step to update searchDirection with new gradient and parameter information
postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
 
postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
 
postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
 
preApply(Layer, Gradient, int) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
Apply gradient normalization: scale based on L2, clipping etc.
precision(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the precision for a given label
precision(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the precision for a given label
precision() - Method in class org.deeplearning4j.eval.Evaluation
Precision based on guesses so far Takes into account all known classes and outputs average precision across all of them
predict(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Takes in a list of examples For each row, returns a label
predict(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Takes in a DataSet of examples For each row, returns a label
predict(INDArray) - Method in interface org.deeplearning4j.nn.api.SequenceClassifier
 
predict(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Returns the predictions for each example in the dataset
predict(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Return predicted label names
predict(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Returns the predictions for each example in the dataset
predict(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Return predicted label names
prediction() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
preOutput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Raw activations
preOutput(INDArray, Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
Raw activations
preOutput(INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Layer
Raw activations
preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Classify input
preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
preOutput(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
preOutput2d(boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
preOutput2d(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
prependToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
preProcess(INDArray, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
Pre preProcess input/activations for a multi layer network
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
 
preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
 
preProcessLine() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Pre preProcess a line before an iteration
preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
Pre preProcess to setup initial searchDirection approximation
preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LBFGS
 
preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
 
preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
 
preProcessor - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
preProcessor - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
preProcessor - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
PreprocessorVertex - Class in org.deeplearning4j.nn.conf.graph
PreprocessorVertex is a simple adaptor class that allows a InputPreProcessor to be used in a ComputationGraph GraphVertex, without it being associated with a layer.
PreprocessorVertex(InputPreProcessor) - Constructor for class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
PreprocessorVertex(InputPreProcessor, InputType) - Constructor for class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
PreprocessorVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
PreprocessorVertex is a simple adaptor class that allows a InputPreProcessor to be used in a ComputationGraph GraphVertex, without it being associated with a layer.
PreprocessorVertex(ComputationGraph, String, int, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
PreprocessorVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
pretrain - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Whether to do layerwise pre training or not
pretrain - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
pretrain - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Whether to do pre train or not
pretrain - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
 
pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Pretrain network with a single input and single output.
pretrain(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Pretrain network with multiple inputs and/or outputs
pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
PretrainLayerFactory - Class in org.deeplearning4j.nn.layers.factory
Used for creating pretrain neural net layers
PretrainLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.PretrainLayerFactory
 
PretrainParamInitializer - Class in org.deeplearning4j.nn.params
Pretrain weight initializer.
PretrainParamInitializer() - Constructor for class org.deeplearning4j.nn.params.PretrainParamInitializer
 
prev() - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Move to the previous entry.
prevImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Move the cursor to the previous image.
printConfiguration() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Prints the configuration
printStringOneCharPerLine(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
printThreadInfo(PrintWriter, String) - Static method in class org.deeplearning4j.util.ReflectionUtils
Print all of the thread's information and stack traces.
printToFile(File, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(File, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String, boolean) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
printToFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Prints to a file.
PriorityQueue<E> - Class in org.deeplearning4j.berkeley
A priority queue based on a binary heap.
PriorityQueue() - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueue(int) - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueueInterface<E> - Interface in org.deeplearning4j.berkeley
 
probRound(double, Random) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value in a probabilistic fashion (e.g.
probToLogOdds(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the log-odds for a given probability.
propDown(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Calculates the activation of the hidden: activation(h * W + vbias)
propUp(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Calculates the activation of the visible : sigmoid(v * W + hbias)
propUp(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Calculates the activation of the visible : sigmoid(v * W + hbias)
pruneKeysBelowThreshold(double) - Method in class org.deeplearning4j.berkeley.Counter
 
put(E, double, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key if it is larger than the previous one;
put(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
put(E, double) - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Adds a key to the queue with the given priority.
put(Pair<K, T>, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Associates the specified value with the specified key in this map (optional operation).
put(K, T, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
putAll(Map<? extends Pair<K, T>, ? extends V>) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Copies all of the mappings from the specified map to this map (optional operation).

Q

QuadTree - Class in org.deeplearning4j.clustering.quadtree
QuadTree: http://en.wikipedia.org/wiki/Quadtree Reference impl based on the paper by: http://arxiv.org/pdf/1301.3342v2.pdf Primarily focused on 2 dimensions, may expand later if there's a reason.
QuadTree(INDArray) - Constructor for class org.deeplearning4j.clustering.quadtree.QuadTree
Pass in a matrix
QuadTree(QuadTree, INDArray, Cell) - Constructor for class org.deeplearning4j.clustering.quadtree.QuadTree
 
QuadTree(Cell) - Constructor for class org.deeplearning4j.clustering.quadtree.QuadTree
 

R

r - Static variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
randomDoubleBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
randomFloatBetween(float, float) - Static method in class org.deeplearning4j.util.MathUtils
 
randomNumberBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a random integer between the specified numbers
randomNumberBetween(double, double, RandomGenerator) - Static method in class org.deeplearning4j.util.MathUtils
Generates a random integer between the specified numbers
RawMnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Mnist data with scaled pixels
RawMnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.RawMnistDataSetIterator
 
RBM - Class in org.deeplearning4j.nn.conf.layers
Restricted Boltzmann Machine.
RBM - Class in org.deeplearning4j.nn.layers.feedforward.rbm
Restricted Boltzmann Machine.
RBM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
RBM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
RBM.Builder - Class in org.deeplearning4j.nn.conf.layers
 
RBM.HiddenUnit - Enum in org.deeplearning4j.nn.conf.layers
 
RBM.VisibleUnit - Enum in org.deeplearning4j.nn.conf.layers
 
RBMUtil - Class in org.deeplearning4j.util
Handles various cooccurrences for RBM specific cooccurrences
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Reads the image at the current position.
readImage() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current image.
readImagesUnsafe(int) - Method in class org.deeplearning4j.datasets.mnist.MnistImageFile
Read the specified number of images from the current position, to a byte[nImages][rows*cols] Note that MNIST data set is stored as unsigned bytes; this method returns signed bytes without conversion (i.e., same bits, but requires conversion before use)
readImageUnsafe(int) - Method in class org.deeplearning4j.datasets.mnist.MnistManager
 
readjustToData() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
Reads the integer at the current position.
readLabel() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Reads the current label.
readLabel(int) - Method in class org.deeplearning4j.datasets.mnist.MnistManager
 
readLabels(int) - Method in class org.deeplearning4j.datasets.mnist.MnistLabelFile
Read the specified number of labels from the current position
readObject(File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
readObject(InputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Reads an object from the given input stream
readString(DataInputStream, int) - Static method in class org.deeplearning4j.util.ByteUtil
 
realMin - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
realMin - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
realMin - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
realMin - Variable in class org.deeplearning4j.plot.Tsne
 
rearrange() - Method in class org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter
 
recall(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the recall for a given label
recall(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the recall for a given label
recall() - Method in class org.deeplearning4j.eval.Evaluation
Recall based on guesses so far Takes into account all known classes and outputs average recall across all of them
reconstruct(INDArray, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Reconstructs the input.
ReconstructionDataSetIterator - Class in org.deeplearning4j.datasets.iterator
Wraps a data applyTransformToDestination iterator setting the first (feature matrix) as the labels.
ReconstructionDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
 
recordReader - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator - Class in org.deeplearning4j.datasets.canova
Record reader dataset iterator
RecordReaderDataSetIterator(RecordReader, int, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Deprecated.
RecordReaderDataSetIterator(RecordReader, WritableConverter) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Deprecated.
RecordReaderDataSetIterator(RecordReader, WritableConverter, int, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Deprecated.
RecordReaderDataSetIterator(RecordReader) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Deprecated.
RecordReaderDataSetIterator(RecordReader, WritableConverter, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, int, int, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, WritableConverter, int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, WritableConverter, int, int, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, int, int, int, int) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Main constructor for multi-label regression (i.e., regression with multiple outputs)
RecordReaderDataSetIterator(RecordReader, WritableConverter, int, int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RecordReaderDataSetIterator(RecordReader, WritableConverter, int, int, int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
Main constructor
RecordReaderMultiDataSetIterator - Class in org.deeplearning4j.datasets.canova
RecordReaderMultiDataSetIterator: A MultiDataSetIterator for data from one or more RecordReaders and SequenceRecordReaders
The idea: generate multiple inputs and multiple outputs from one or more Sequence/RecordReaders.
RecordReaderMultiDataSetIterator.AlignmentMode - Enum in org.deeplearning4j.datasets.canova
When dealing with time series data of different lengths, how should we align the input/labels time series? For equal length: use EQUAL_LENGTH For sequence classification: use ALIGN_END
RecordReaderMultiDataSetIterator.Builder - Class in org.deeplearning4j.datasets.canova
 
recurrent(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
InputType for recurrent neural network (time series) data
RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
Weights for previous time step -> current time step connections
RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GRUParamInitializer
Weights for previous time step -> current time step connections
RECURRENT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
 
RECURRENT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
Weights for previous time step -> current time step connections
redistributeParams - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
redistributeParams(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Whether to redistribute parameters as a view or not
redistributeParams - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
redistributeParams - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Deprecated.
redistributeParams(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Deprecated.
redistributeParams - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
Deprecated.
ReflectionUtils - Class in org.deeplearning4j.util
General reflection utils
ReflectionUtils() - Constructor for class org.deeplearning4j.util.ReflectionUtils
 
refreshClusterCenter(Cluster, ClusterInfo) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
refreshClustersCenters(ClusterSet, ClusterSetInfo, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
regression - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
RegressionEvaluation - Class in org.deeplearning4j.eval
Evaluation method for the evaluation of regression algorithms.
Provides the following metrics, for each column:
- MSE: mean squared error
- MAE: mean absolute error
- RMSE: root mean squared error
- RSE: relative squared error
- correlation coefficient
See for example: http://www.saedsayad.com/model_evaluation_r.htm For classification, see Evaluation
RegressionEvaluation(int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
Create a regression evaluation object with the specified number of columns, and default precision for the stats() method.
RegressionEvaluation(int, int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
Create a regression evaluation object with the specified number of columns, and specified precision for the stats() method.
RegressionEvaluation(String...) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
Create a regression evaluation object with default precision for the stats() method
RegressionEvaluation(List<String>) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
Create a regression evaluation object with default precision for the stats() method
RegressionEvaluation(List<String>, int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
Create a regression evaluation object with specified precision for the stats() method
regularization(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Whether to use regularization (l1, l2, dropout, etc
reinitMapperWithSubtypes(Collection<NamedType>) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Reinitialize and return the Jackson/json ObjectMapper with additional named types.
relativeDifferance(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
relativeSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
remove() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
remove() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Not supported -- next() already removes the head of the queue.
remove() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Removes from the underlying collection the last element returned by this iterator (optional operation).
remove() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Removes from the underlying collection the last element returned by this iterator (optional operation).
remove() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
remove() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
remove(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
remove() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Removes the mapping for a key from this map if it is present (optional operation).
remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes the specified element from this applyTransformToDestination if it is present (optional operation).
removeAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
removeAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes from this applyTransformToDestination all of its elements that are contained in the specified collection (optional operation).
removeClusterInfos(List<Cluster>) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
removeColumns(Integer...) - Method in class org.deeplearning4j.util.StringGrid
Removes the specified columns from the grid
removeEmptyClusters(ClusterSetInfo) - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
removeEmptyClusters() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
removeFirst() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
removeKey(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removeKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
removeKeyFromEntries(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removePoint(String) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
removePoints() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
removePoints() - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
removePoints() - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
removeRowsWithEmptyColumn(int) - Method in class org.deeplearning4j.util.StringGrid
Removes all rows with a column of NONE
removeRowsWithEmptyColumn(int, String) - Method in class org.deeplearning4j.util.StringGrid
Removes all rows with a column of missingValue
render(INDArray, String) - Static method in class org.deeplearning4j.plot.ImageRender
 
reset() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Returns the fetcher back to the beginning of the dataset
reset() - Method in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Resets the iterator back to the beginning
reset() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Resets the iterator back to the beginning
reset() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
reset() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
ReshapePreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Reshape post processor.
Used to reshape activations on forward pass.
Also (optionally, if fromShape != null) used to reshape, weights*deltas during backward pass.
ReshapePreProcessor(int[], int[], boolean) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
ReshapePreProcessor(int...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
ReshapePreProcessor(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor
 
reshapeTimeSeriesMaskToVector(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
Reshape time series mask arrays.
restoreComputationGraph(String) - Static method in class org.deeplearning4j.util.ModelSerializer
 
restoreComputationGraph(File) - Static method in class org.deeplearning4j.util.ModelSerializer
 
restoreMultiLayerNetwork(File) - Static method in class org.deeplearning4j.util.ModelSerializer
 
restoreMultiLayerNetwork(String) - Static method in class org.deeplearning4j.util.ModelSerializer
 
retainAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
retainAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Retains only the elements in this applyTransformToDestination that are contained in the specified collection (optional operation).
reverse() - Method in class org.deeplearning4j.berkeley.Pair
 
ReverseFirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
ReverseSecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
rho - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
rho(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Ada delta coefficient
rho - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
rho - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
rho(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Ada delta coefficient
rightChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
rmsDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
rmsDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Decay rate for RMSProp.
rmsDecay - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
rmsDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
rmsDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Decay rate for RMSProp.
RmsPropAggregator() - Constructor for class org.deeplearning4j.nn.updater.RmsPropUpdater.RmsPropAggregator
 
RmsPropUpdater - Class in org.deeplearning4j.nn.updater
 
RmsPropUpdater() - Constructor for class org.deeplearning4j.nn.updater.RmsPropUpdater
 
RmsPropUpdater.RmsPropAggregator - Class in org.deeplearning4j.nn.updater
 
rng - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
rnnActivateUsingStoredState(INDArray[], boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Similar to rnnTimeStep and feedForward() methods.
rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Similar to rnnTimeStep, this method is used for activations using the state stored in the stateMap as the initialization.
rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Similar to rnnTimeStep and feedForward() methods.
rnnClearPreviousState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Clear the previous state of the RNN layers (if any), used in ComputationGraph.rnnTimeStep(INDArray...)
rnnClearPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
rnnClearPreviousState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Clear the previous state of the RNN layers (if any).
rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the state of the RNN layer, as used in ComputationGraph.rnnTimeStep(INDArray...).
rnnGetPreviousState(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get the state of the RNN layer, as used in ComputationGraph.rnnTimeStep(INDArray...).
rnnGetPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Returns a shallow copy of the stateMap
rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Get the state of the RNN layer, as used in rnnTimeStep().
rnnGetPreviousStates() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Get a map of states for ALL RNN layers, as used in ComputationGraph.rnnTimeStep(INDArray...).
rnnGetTBPTTState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
 
RnnOutputLayer - Class in org.deeplearning4j.nn.conf.layers
 
RnnOutputLayer - Class in org.deeplearning4j.nn.layers.recurrent
Recurrent Neural Network Output Layer.
Handles calculation of gradients etc for various objective functions.
Functionally the same as OutputLayer, but handles output and label reshaping automatically.
Input and output activations are same as other RNN layers: 3 dimensions with shape [miniBatchSize,nIn,timeSeriesLength] and [miniBatchSize,nOut,timeSeriesLength] respectively.
RnnOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
RnnOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
RnnOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the state of the RNN layer, for use in ComputationGraph.rnnTimeStep(INDArray...)
rnnSetPreviousState(String, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the state of the RNN layer, for use in ComputationGraph.rnnTimeStep(INDArray...)
rnnSetPreviousState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Set the state map.
rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Set the state of the RNN layer.
rnnSetPreviousStates(Map<String, Map<String, INDArray>>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the states for all RNN layers, for use in ComputationGraph.rnnTimeStep(INDArray...)
rnnSetTBPTTState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
 
rnnTimeStep(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
If this ComputationGraph contains one or more RNN layers: conduct forward pass (prediction) but using previous stored state for any RNN layers.
rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing forward pass always from t=0)
If stateMap is empty, default initialization (usually zeros) is used
Implementations also update stateMap at the end of this method
rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
If this MultiLayerNetwork contains one or more RNN layers: conduct forward pass (prediction) but using previous stored state for any RNN layers.
RnnToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow RNN and CNN layers to be used together
For example, time series (video) input -> ConvolutionLayer, or conceivable GravesLSTM -> ConvolutionLayer
Functionally equivalent to combining RnnToFeedForwardPreProcessor + FeedForwardToCnnPreProcessor
Specifically, this does two things:
(a) Reshape 3d activations out of RNN layer, with shape [miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength]) into 4d (CNN) activations (with shape [numExamples*timeSeriesLength, numChannels, inputWidth, inputHeight])
(b) Reshapes 4d epsilons (weights.*deltas) out of CNN layer (with shape [numExamples*timeSeriesLength, numChannels, inputHeight, inputWidth]) into 3d epsilons with shape [miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength] suitable to feed into CNN layers.
RnnToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
RnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, GravesLSTM -> OutputLayer or GravesLSTM -> DenseLayer
This does two things:
(a) Reshapes activations out of RNN layer (which is 3D with shape [miniBatchSize,layerSize,timeSeriesLength]) into 2d activations (with shape [miniBatchSize*timeSeriesLength,layerSize]) suitable for use in feed-forward layers.
(b) Reshapes 2d epsilons (weights*deltas from feed forward layer, with shape [miniBatchSize*timeSeriesLength,layerSize]) into 3d epsilons (with shape [miniBatchSize,layerSize,timeSeriesLength]) for use in RNN layer
RnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
rnnUpdateStateWithTBPTTState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Update the internal state of RNN layers after a truncated BPTT fit call
rootMeanSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
rootMeansSquaredError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the root mean squared error of two data sets
round(double) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value.
roundDouble(double, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.
roundFloat(float, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.
runPairWise(List<V>, CounterMap.CountFunction<V>) - Static method in class org.deeplearning4j.berkeley.CounterMap
Build a counter map by iterating pairwise over the list.

S

sample(Random) - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample() - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sampleDoublesInInterval(double[][], int) - Static method in class org.deeplearning4j.util.MathUtils
 
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
Sample the hidden distribution given the visible
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Binomial sampling of the hidden values given visible
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
Sample the visible distribution given the hidden
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Guess the visible values given the hidden
SamplingDataSetIterator - Class in org.deeplearning4j.datasets.iterator
A wrapper for a dataset to sample from.
SamplingDataSetIterator(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
saveBestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
Save the best model (so far) learned during early stopping training
saveBestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
saveBestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
saveBestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
saveLastModel(boolean) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Save the last model? If true: save the most recent model at each epoch, in addition to the best model (whenever the best model improves).
saveLatestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
Save the latest (most recent) model learned during early stopping
saveLatestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
saveLatestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
saveLatestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
saveLayerParameters(INDArray, String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Save existing parameters for the layer
saveNetworkAndParameters(MultiLayerNetwork, String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Save model configuration and parameters
saveObject(Object, File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
saveParameters(MultiLayerNetwork, int[], Map<Integer, String>) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Save existing parameters for the network
saveParameters(MultiLayerNetwork, String[], Map<String, String>) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Save existing parameters for the network
saveUpdators(MultiLayerNetwork, String) - Static method in class org.deeplearning4j.util.NetSaverLoaderUtils
Save model updators
scale(double) - Method in class org.deeplearning4j.berkeley.Counter
 
scale(double) - Method in class org.deeplearning4j.berkeley.CounterMap
Scale all entries in CounterMap by scaleFactor
scale(INDArray) - Method in class org.deeplearning4j.plot.PlotFilters
scale the data to between 0 and 1
scaledClone(double) - Method in class org.deeplearning4j.berkeley.Counter
 
score() - Method in interface org.deeplearning4j.nn.api.Model
The score for the model
score - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
score(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Sets the input and labels and returns a score for the prediction with respect to the true labels
This is equivalent to ComputationGraph.score(DataSet, boolean) with training==true.
NOTE: this version of the score function can only be used with ComputationGraph networks that have a single input and a single output.
score(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Sets the input and labels and returns a score for the prediction with respect to the true labels
NOTE: this version of the score function can only be used with ComputationGraph networks that have a single input and a single output.
score(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Score the network given the MultiDataSet, at test time
score(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Sets the input and labels and returns a score for the prediction with respect to the true labels
score() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
score - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
score() - Method in class org.deeplearning4j.nn.layers.BaseLayer
Objective function: the specified objective
score() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
score - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels and returns a score for the prediction with respect to the true labels
This is equivalent to MultiLayerNetwork.score(DataSet, boolean) with training==true.
score(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate the score (loss function) of the prediction with respect to the true labels
score() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Score of the model (relative to the objective function)
score() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
The score for the optimizer so far
score - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
score() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
score() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
SCORE_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
scoreCalculator(ScoreCalculator<T>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
Score calculator.
ScoreCalculator<T extends Model> - Interface in org.deeplearning4j.earlystopping.scorecalc
ScoreCalculator interface is used to calculate a score for a neural network.
scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the score for each example in a DataSet individually.
scoreExamples(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the score for each example in a DataSet individually.
scoreExamples(DataSetIterator, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate the score for each example in a DataSet individually.
ScoreImprovementEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
Terminate training if best model score does not improve for N epochs
ScoreImprovementEpochTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
 
ScoreImprovementEpochTerminationCondition(int, double) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
 
ScoreIterationListener - Class in org.deeplearning4j.optimize.listeners
Score iteration listener
ScoreIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
 
ScoreIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
Default constructor printing every 10 iterations
search(DataPoint, int, List<DataPoint>, List<Double>) - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
search(VPTree.Node, DataPoint, int, PriorityQueue<HeapItem>) - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
SEARCH_DIR - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
searchState - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
SecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.SecondComparator
 
seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
seed(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Random number generator seed.
seed(long) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Random number generator seed.
seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
select(int, String) - Method in class org.deeplearning4j.util.StringGrid
 
sequenceAlignmentMode(RecordReaderMultiDataSetIterator.AlignmentMode) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.Builder
Set the sequence alignment mode for all sequences
SequenceClassifier - Interface in org.deeplearning4j.nn.api
Created by agibsonccc on 8/27/14.
sequenceIter - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
SequenceRecordReaderDataSetIterator - Class in org.deeplearning4j.datasets.canova
Sequence record reader data set iterator Given a record reader (and optionally another record reader for the labels) generate time series (sequence) data sets.
Supports padding for one-to-many and many-to-one type data loading (i.e., with different number of inputs vs.
SequenceRecordReaderDataSetIterator(SequenceRecordReader, SequenceRecordReader, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
Constructor where features and labels come from different RecordReaders (for example, different files)
SequenceRecordReaderDataSetIterator(SequenceRecordReader, SequenceRecordReader, int, int, boolean, SequenceRecordReaderDataSetIterator.AlignmentMode) - Constructor for class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
Constructor where features and labels come from different RecordReaders (for example, different files)
SequenceRecordReaderDataSetIterator(SequenceRecordReader, int, int, int, boolean) - Constructor for class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
Constructor where features and labels come from the SAME RecordReader (i.e., target/label is a column in the same data as the features)
SequenceRecordReaderDataSetIterator.AlignmentMode - Enum in org.deeplearning4j.datasets.canova
Alignment mode for dealing with input/labels of differing lengths (for example, one-to-many and many-to-one type situations).
SerializationUtils - Class in org.deeplearning4j.util
Serialization utils for saving and reading serializable objects
SerializationUtils() - Constructor for class org.deeplearning4j.util.SerializationUtils
 
setAbsTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
Sets the tolerance of absolute diff in function value.
setAccumulation(String) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
setAddress(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
setAllCounts(double) - Method in class org.deeplearning4j.berkeley.Counter
Sets all counts to the given value, but does not remove any keys
setAllowEmptyClusters(boolean) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setArray(INDArray) - Method in class org.deeplearning4j.clustering.cluster.Point
 
setAveragePointDistanceFromCenter(double) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Set the gradients array as a view of the full (backprop) network parameters NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setBatchSize(int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Set the batch size for the optimizer
setBatchSize(int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
setBegin(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setBoundary(Cell) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setCenter(Point) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
setCenterOfMass(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setCluster(Cluster) - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
setClusters(List<Cluster>) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
setClusterSetInfo(ClusterSetInfo) - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
setClustersInfos(Map<String, ClusterInfo>) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
setConf(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.Model
Setter for the configuration
setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setContentionTracing(boolean) - Static method in class org.deeplearning4j.util.ReflectionUtils
 
setCorner(int, double) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
setCorner(INDArray) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
setCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key, clobbering any previous count.
setCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Sets the count for a particular (key, value) pair.
setCounter(K, Counter<V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setCumSize(int) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setCumSize(int) - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
setCurrent(int) - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Set the position to be read.
setCurrentIndex(long) - Method in class org.deeplearning4j.datasets.mnist.MnistDbFile
Set the required current entry index.
setD(int) - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
setDefault(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setDeflt(double) - Method in class org.deeplearning4j.berkeley.Counter
 
setDirty(boolean) - Method in class org.deeplearning4j.berkeley.Counter
 
setDistance(double) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
setDistanceFromCenter(double) - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
setDistanceFunction(String) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setDistances(CounterMap<DataPoint, DataPoint>) - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
setDistancesBetweenClustersCenters(Table<String, String, Double>) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
setEnd(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setError(int, INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
setError(int, INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Set the errors (epsilons) for this GraphVertex
setError(double) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setErrors(INDArray...) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
setErrors(INDArray...) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Set all errors/epsilons for this GraphVertex
setFilters(PlotFilters) - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
setFinalMomentum(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setFinalMomentum(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setFinalMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setFirst(F) - Method in class org.deeplearning4j.berkeley.Pair
 
setFirst(S) - Method in class org.deeplearning4j.berkeley.Triple
 
setFirstKey(K) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
setGoldLabel(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setGradientFor(String, INDArray) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
setGradientFor(String, INDArray, Character) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
setGradientFor(String, INDArray) - Method in interface org.deeplearning4j.nn.gradient.Gradient
Update gradient for the given variable
setGradientFor(String, INDArray, Character) - Method in interface org.deeplearning4j.nn.gradient.Gradient
Update gradient for the given variable; also (optionally) specify the order in which the array should be flattened to a row vector
setHeadWord(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setHh(double) - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
setHw(double) - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
setId(String) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
setId(String) - Method in class org.deeplearning4j.clustering.cluster.Point
 
setIndex(int) - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
setIndex(int) - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
setIndex(int) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
setIndex(int) - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
setIndex(int) - Method in interface org.deeplearning4j.nn.api.Layer
Set the layer index.
setIndex(int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setIndex(int) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
setIndex(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setInitialClusterCount(Integer) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setInitialMomentum(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setInitialMomentum(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setInitialMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setInput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Get the layer input.
setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the specified input for the ComputationGraph
setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
setInput(int, INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Set the input activations.
setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
setInput(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setInput(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Note that if input isn't null and the neuralNets are null, this is a way of initializing the neural network
setInput(INDArray) - Method in class org.deeplearning4j.plot.PlotFilters
 
setInputMiniBatchSize(int) - Method in interface org.deeplearning4j.nn.api.Layer
Set current/last input mini-batch size.
Used for score and gradient calculations.
setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setInputs(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set all inputs for the ComputationGraph network
setInputs(INDArray...) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Set all inputs for this GraphVertex
setInputTypes(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Specify the types of inputs to the network, so that:
(a) preprocessors can be automatically added, and
(b) the nIns (input size) for each layer can be automatically calculated and set
The order here is the same order as .addInputs().
setInputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
setInputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Sets the input vertices.
setInvert(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setItems(List<DataPoint>) - Method in class org.deeplearning4j.clustering.vptree.VPTree
 
setIteration(int) - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
setIteration(int) - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
setIterationListener(IterationListener) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
setIterationsInfos(Map<Integer, IterationInfo>) - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationHistory
 
setLabel(String) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
setLabel(String) - Method in class org.deeplearning4j.clustering.cluster.Point
 
setLabel(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the specified label for the ComputationGraph
setLabel(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setLabelNames(List<String>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Sets a list of label names to the curr dataset
setLabels(INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set all labels for the ComputationGraph network
setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
setLabels(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setLastHeight(int) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
setLastOutChannels(int) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
setLastWidth(int) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
setLayerMaskArrays(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the mask arrays for features and labels.
setLayerMaskArrays(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Set the mask arrays for features and labels.
setLayerParamLR(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setLayers(Layer[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setLayerWiseConfigurations(MultiLayerConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setLeaf(boolean) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setLearningRateByParam(String, double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
setLeft(KDTree.KDNode) - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
setLeft(VPTree.Node) - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
setListener(EarlyStoppingListener<T>) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
setListener(EarlyStoppingListener<T>) - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
Set the early stopping listener
setListeners(IterationListener...) - Method in interface org.deeplearning4j.nn.api.Layer
Set the iteration listeners for this layer.
setListeners(Collection<IterationListener>) - Method in interface org.deeplearning4j.nn.api.Layer
Set the iteration listeners for this layer.
setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the IterationListeners for the ComputationGraph (and all layers in the network)
setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the IterationListeners for the ComputationGraph (and all layers in the network)
setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setListeners(Collection<IterationListener>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.Solver
 
setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
setLogin(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
setLogMetaInstability(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogOfDiangnalTProb(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogPCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogPIncorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLogStates(double) - Method in class org.deeplearning4j.util.Viterbi
 
setLower(double) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
setMask(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setMaskArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
 
setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setMax(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMaxCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the maximum of the current count and val.
setMaxIter(int) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setMaxIter(int) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setMaxIter(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
setMaxPointDistanceFromCenter(double) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
setMean(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
setMean(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMeanVar - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
setMetaStability(double) - Method in class org.deeplearning4j.util.Viterbi
 
setMin(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setMinCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the minimum of the current count and val.
setMomentum(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setMomentum(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setMomentum(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setNewLocation(boolean) - Method in class org.deeplearning4j.clustering.cluster.PointClassification
 
setnInForLayer(Map<String, Integer>) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
setNorthEast(QuadTree) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setNorthWest(QuadTree) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setNumChildren(int) - Method in class org.deeplearning4j.clustering.sptree.SpTree
 
setOptimizationPhaseCondition(ClusteringAlgorithmCondition) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setOutputFile(File) - Method in class org.deeplearning4j.plot.iterationlistener.ActivationMeanIterationListener
 
setOutputFile(File) - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
setOutputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Set the network output labels.
setOutputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
setOutputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
set the output vertices.
setOutSizesEachLayer(Map<String, int[]>) - Method in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
setParam(String, INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Set the parameter with a new ndarray
setParam(String, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setParam(String, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setParam(String, INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setParameters(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets parameters for the model.
setParams(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Set the parameters for this model.
setParams(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
setParams(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Set the parameters for this model.
setParams(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setParamsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Set the initial parameters array as a view of the full (backprop) network parameters NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setParamsViewArray(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setParamTable(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.Model
Setter for the param table
setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setParent(KDTree.KDNode) - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
setParent(QuadTree) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setParent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setParse(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setPassword(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
setPath(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
If you're using UiServer as servlet, located not at root folder of webserver (i.e.
setpCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
 
setPoint(INDArray) - Method in class org.deeplearning4j.clustering.sptree.DataPoint
 
setPointDistanceFromCenterVariance(double) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
setPointDistancesFromCenter(Map<String, Double>) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
setPointDistribution(Map<String, String>) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
setPointLocationChange(AtomicInteger) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
setPoints(List<Point>) - Method in class org.deeplearning4j.clustering.cluster.Cluster
 
setPort(int) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
 
setPossibleLabels(INDArray) - Method in class org.deeplearning4j.util.Viterbi
 
setPrediction(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
setProbabilityOfSuccess(double) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
setProperties(Object, Properties) - Static method in class org.deeplearning4j.util.Dl4jReflection
Sets the properties of the given object
setRealMin(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setRealMin(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setRealMin(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setRelTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
Sets the tolerance of relative diff in function value.
setRight(KDTree.KDNode) - Method in class org.deeplearning4j.clustering.kdtree.KDTree.KDNode
 
setRight(VPTree.Node) - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
setScore(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
setScore(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
setScoreFor(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
setSecond(S) - Method in class org.deeplearning4j.berkeley.Pair
 
setSecond(T) - Method in class org.deeplearning4j.berkeley.Triple
 
setSecondKey(T) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
 
setSessionId(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo.Builder
This method allows you to specify sessionId for this UiConnectionInfo instance PLEASE NOTE: This is not recommended.
setSessionId(String) - Method in class org.deeplearning4j.ui.UiConnectionInfo
 
setSimiarlityFunction(String) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
setSize(int) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setSouthEast(QuadTree) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setSouthWest(QuadTree) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
setStates(int) - Method in class org.deeplearning4j.util.Viterbi
 
setStd(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
setStepMax(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
 
setStrategyApplied(boolean) - Method in class org.deeplearning4j.clustering.algorithm.iteration.IterationInfo
 
setSum(double) - Method in class org.deeplearning4j.util.SummaryStatistics
 
setSwitchMomentumIteration(int) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
setSwitchMomentumIteration(int) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
setSwitchMomentumIteration(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
setTags(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setTerminationCondition(ClusteringAlgorithmCondition) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setThird(U) - Method in class org.deeplearning4j.berkeley.Triple
 
setThreshold(double) - Method in class org.deeplearning4j.clustering.vptree.VPTree.Node
 
setTokens(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setTotalPointDistanceFromCenter(double) - Method in class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
setType(ClusteringOptimizationType) - Method in class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
setType(ClusteringStrategyType) - Method in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
setType(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setup(ClusteringStrategy) - Static method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
setup(int, String) - Static method in class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
setup(int, String) - Static method in class org.deeplearning4j.clustering.algorithm.strategy.OptimisationStrategy
 
setup(int, int, String) - Static method in class org.deeplearning4j.clustering.kmeans.KMeansClustering
 
setup(int, double, String, boolean) - Static method in class org.deeplearning4j.clustering.kmeans.KMeansClustering
 
setup(Configuration) - Method in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
setUpdater(ComputationGraphUpdater) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Set the computationGraphUpdater for the network
setUpdater(Updater) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Set the updater for the MultiLayerNetwork
setUpdater(Updater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
setUpdater(Updater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
setUpdaterComputationGraph(ComputationGraphUpdater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
 
setUpdaterComputationGraph(ComputationGraphUpdater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
setUpdaterState(BaseUpdater) - Method in class org.deeplearning4j.nn.updater.BaseUpdater.UpdaterAggregatorImpl
 
setUpper(double) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
setupSearchState(Pair<Gradient, Double>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Based on the gradient and score setup a search state
setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
Setup the initial search state
setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
 
SetUtils - Class in org.deeplearning4j.util
 
setValue(double) - Method in class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
setValue(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setValue(V) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
Replaces the value corresponding to this entry with the specified value (optional operation).
setVariables(List<String>) - Method in class org.deeplearning4j.plot.iterationlistener.PlotFiltersIterationListener
 
setVector(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
setWidth(int, double) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
setWidth(INDArray) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
setX(double) - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
setY(double) - Method in class org.deeplearning4j.clustering.quadtree.Cell
 
setY(INDArray) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
SgdAggregator() - Constructor for class org.deeplearning4j.nn.updater.SgdUpdater.SgdAggregator
 
SgdUpdater - Class in org.deeplearning4j.nn.updater
 
SgdUpdater() - Constructor for class org.deeplearning4j.nn.updater.SgdUpdater
 
SgdUpdater.SgdAggregator - Class in org.deeplearning4j.nn.updater
 
shape - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
shuffle - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
shuffleArray(int[], long) - Static method in class org.deeplearning4j.util.MathUtils
 
shuffleArray(int[], Random) - Static method in class org.deeplearning4j.util.MathUtils
 
shutdown() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
Shut down the async data set iterator thread This is not typically necessary if using a single AsyncDataSetIterator (thread is a daemon thread and so shouldn't block the JVM from exiting) Behaviour of next(), hasNext() etc methods after shutdown of async iterator is undefined
sigma - Variable in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
sigmoid(double) - Static method in class org.deeplearning4j.util.MathUtils
1 / 1 + exp(-x)
similarityFunction(String) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
simpleHostname(String) - Static method in class org.deeplearning4j.util.StringUtils
Given a full hostname, return the word upto the first dot.
size() - Method in class org.deeplearning4j.berkeley.Counter
The number of entries in the counter (not the total count -- use totalCount() instead).
size() - Method in class org.deeplearning4j.berkeley.CounterMap
The number of keys in this CounterMap (not the number of key-value entries -- use totalSize() for that)
size() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
size() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Number of elements in the queue.
size() - Method in class org.deeplearning4j.clustering.kdtree.KDTree
The number of elements in the tree
size() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
size() - Method in class org.deeplearning4j.util.Index
 
size() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns the number of key-value mappings in this map.
size() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns the number of elements in this applyTransformToDestination (its cardinality).
SizeComparator() - Constructor for class org.deeplearning4j.util.StringCluster.SizeComparator
 
slope(double, double, double, double) - Method in class org.deeplearning4j.util.MathUtils
This returns the slope of the given points.
SloppyMath - Class in org.deeplearning4j.berkeley
The class SloppyMath contains methods for performing basic numeric operations.
SloppyMath() - Constructor for class org.deeplearning4j.berkeley.SloppyMath
 
slurpFile(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFile(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file
slurpFileNoExceptions(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given file with the given encoding.
slurpFileNoExceptions(File) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text in the given File.
slurpGBFile(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBFileNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
slurpGBURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpGBURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpReader(Reader) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text from the given Reader.
slurpURL(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURL(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(URL) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
slurpURLNoExceptions(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns all the text at the given URL.
sm(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is smaller than b.
SMALL - Static variable in class org.deeplearning4j.util.MathUtils
The small deviation allowed in double comparisons.
solver - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
solver - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
solver - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
Solver - Class in org.deeplearning4j.optimize
Generic purpose solver
Solver() - Constructor for class org.deeplearning4j.optimize.Solver
 
Solver.Builder - Class in org.deeplearning4j.optimize
 
sort() - Method in class org.deeplearning4j.util.StringCluster
 
sortBy(int) - Method in class org.deeplearning4j.util.StringGrid
 
sortColumnsByWordLikelihoodIncluded(int) - Method in class org.deeplearning4j.util.StringGrid
 
sparsity(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
sparsity - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
 
sparsity(double) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
sparsity - Variable in class org.deeplearning4j.nn.conf.layers.RBM
 
split(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits on whitespace (\\s+).
split(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Splits the given string using the given regex as delimiters.
split(int, String) - Method in class org.deeplearning4j.util.StringGrid
 
split(String) - Static method in class org.deeplearning4j.util.StringUtils
Split a string using the default separator
split(String, char, char) - Static method in class org.deeplearning4j.util.StringUtils
Split a string using the given separator
splitClusters(ClusterSet, ClusterSetInfo, List<Cluster>, double, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitClusters(ClusterSet, ClusterSetInfo, List<Cluster>, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitClustersWhereAverageDistanceFromCenterGreaterThan(ClusterSet, ClusterSetInfo, double, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitClustersWhereMaximumDistanceFromCenterGreaterThan(ClusterSet, ClusterSetInfo, double, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitInputs(INDArray, INDArray, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitInputs(List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitMostPopulatedClusters(ClusterSet, ClusterSetInfo, int, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitMostSpreadOutClusters(ClusterSet, ClusterSetInfo, int, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
splitOnCharWithQuoting(String, char, char, char) - Static method in class org.deeplearning4j.berkeley.StringUtils
This function splits the String s into multiple Strings using the splitChar.
SpTree - Class in org.deeplearning4j.clustering.sptree
 
SpTree(SpTree, INDArray, INDArray, INDArray, Set<INDArray>, String) - Constructor for class org.deeplearning4j.clustering.sptree.SpTree
 
SpTree(INDArray, Set<INDArray>, String) - Constructor for class org.deeplearning4j.clustering.sptree.SpTree
 
SpTree(SpTree, INDArray, INDArray, INDArray, Set<INDArray>) - Constructor for class org.deeplearning4j.clustering.sptree.SpTree
 
SpTree(INDArray, Set<INDArray>) - Constructor for class org.deeplearning4j.clustering.sptree.SpTree
 
SpTree(INDArray) - Constructor for class org.deeplearning4j.clustering.sptree.SpTree
 
squaredLoss(double[], double[], double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the squared loss of the given points
ssError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is NOT explained by the regression
ssReg(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is explained by the regression
ssTotal(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Total variance in target attribute
start() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.GRU
 
STATE_KEY_PREV_MEMCELL - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
STATE_TRACKER_CONNECTION_STRING - Static variable in interface org.deeplearning4j.nn.conf.DeepLearningConfigurable
 
stateMap - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
stateMap stores the INDArrays needed to do rnnTimeStep() forward pass.
stats() - Method in class org.deeplearning4j.eval.Evaluation
 
stats(boolean) - Method in class org.deeplearning4j.eval.Evaluation
Method to obtain the classification report as a String
stats() - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
std - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
step(INDArray, INDArray, double) - Method in interface org.deeplearning4j.optimize.api.StepFunction
Step with the given parameters
step(INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.api.StepFunction
Step with no parameters
step() - Method in interface org.deeplearning4j.optimize.api.StepFunction
 
step - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
Does x = x + stepSize * line
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
 
step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
 
step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
 
step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
 
step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
 
step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
 
step(INDArray, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
An individual iteration
step(INDArray, int) - Method in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
An individual iteration
stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
stepFunction(StepFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Step function to apply for back track line search.
stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
StepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
Custom step function for line search.
StepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
 
StepFunction - Interface in org.deeplearning4j.optimize.api
Custom step function for line search
stepFunction - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
StepFunctions - Class in org.deeplearning4j.optimize.stepfunctions
 
StepFunctions() - Constructor for class org.deeplearning4j.optimize.stepfunctions.StepFunctions
 
stepMax - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
StochasticGradientDescent - Class in org.deeplearning4j.optimize.solvers
Stochastic Gradient Descent Standard fix step size No line search
StochasticGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
 
StochasticGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
 
stopLyingIteration(int) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
stopLyingIteration - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
stopLyingIteration(int) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
stopLyingIteration - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
stopLyingIteration - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
stopLyingIteration(int) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
stopLyingIteration - Variable in class org.deeplearning4j.plot.Tsne
 
stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
 
stride - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
 
stride - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
string2long(String) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
Convert a string to long.
StringCluster - Class in org.deeplearning4j.util
Clusters strings based on fingerprint: for example Two words and TWO words or WORDS TWO would be put together
StringCluster(List<String>) - Constructor for class org.deeplearning4j.util.StringCluster
 
StringCluster.SizeComparator - Class in org.deeplearning4j.util
 
StringGrid - Class in org.deeplearning4j.util
String matrix
StringGrid(StringGrid) - Constructor for class org.deeplearning4j.util.StringGrid
 
StringGrid(String, int) - Constructor for class org.deeplearning4j.util.StringGrid
 
StringGrid(String, Collection<String>) - Constructor for class org.deeplearning4j.util.StringGrid
 
stringifyException(Throwable) - Static method in class org.deeplearning4j.util.StringUtils
Make a string representation of the exception.
stringSimilarity(String...) - Static method in class org.deeplearning4j.util.MathUtils
Calculate string similarity with tfidf weights relative to each character frequency and how many times a character appears in a given string
stringToProperties(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
This method converts a comma-separated String (with whitespace optionally allowed after the comma) representing properties to a Properties object.
stringToURI(String[]) - Static method in class org.deeplearning4j.util.StringUtils
 
StringUtils - Class in org.deeplearning4j.berkeley
StringUtils is a class for random String things.
StringUtils - Class in org.deeplearning4j.util
General string utils
StringUtils() - Constructor for class org.deeplearning4j.util.StringUtils
 
StringUtils.TraditionalBinaryPrefix - Enum in org.deeplearning4j.util
The traditional binary prefixes, kilo, mega, ..., exa, which can be represented by a 64-bit integer.
stripDuplicateRows() - Method in class org.deeplearning4j.util.StringGrid
 
stripNonAlphaNumerics(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
subDivide() - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Create four children which fully divide this cell into four quads of equal area
subDivide() - Method in class org.deeplearning4j.clustering.sptree.SpTree
Subdivide the node in to 4 children
SubsampleLayerFactory - Class in org.deeplearning4j.nn.layers.factory
 
SubsampleLayerFactory(Class<? extends Layer>) - Constructor for class org.deeplearning4j.nn.layers.factory.SubsampleLayerFactory
 
SubsamplingLayer - Class in org.deeplearning4j.nn.conf.layers
Subsampling layer also referred to as pooling in convolution neural nets Supports the following pooling types: MAX AVG NON
SubsamplingLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
Subsampling layer.
SubsamplingLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
SubsamplingLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
SubsamplingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
SubsamplingLayer.PoolingType - Enum in org.deeplearning4j.nn.conf.layers
 
SubsetVertex - Class in org.deeplearning4j.nn.conf.graph
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
SubsetVertex(int, int) - Constructor for class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
SubsetVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
SubsetVertex(ComputationGraph, String, int, int, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
SubsetVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
sum(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of the given array.
SummaryStatistics - Class in org.deeplearning4j.util
 
summaryStats(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
 
summaryStatsString(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
 
sumOfMeanDifferences(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfMeanDifferencesOnePoint(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfProducts(double[]...) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of products for the given numbers.
sumOfSquares(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of squares for the given vector.
swap(int, int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
swap(int, int) - Method in class org.deeplearning4j.util.StringGrid
 
switchMomentumIteration - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
switchMomentumIteration - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
switchMomentumIteration - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
switchMomentumIteration - Variable in class org.deeplearning4j.plot.Tsne
 
symbol - Variable in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
 
symmetrized(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Symmetrize the value matrix

T

tags() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
taskByModel(Model) - Static method in class org.deeplearning4j.util.ModelSerializer
 
tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
Truncated BPTT equivalent of Layer.backpropGradient().
tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
tBPTTBackwardLength(int) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
tBPTTBackwardLength(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
tBPTTForwardLength(int) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
When doing truncated BPTT: how many steps of forward pass should we do before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller)
Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
tBPTTForwardLength(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
When doing truncated BPTT: how many steps of forward pass should we do before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller)
Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
tBpttStateMap - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
State map for use specifically in truncated BPTT training.
TEMP_ROOT - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
 
terminate(int, double) - Method in interface org.deeplearning4j.earlystopping.termination.EpochTerminationCondition
Should the early stopping training terminate at this epoch, based on the calculated score and the epoch number? Returns true if training should terminated, or false otherwise
terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
 
terminate(double) - Method in interface org.deeplearning4j.earlystopping.termination.IterationTerminationCondition
Should early stopping training terminate at this iteration, based on the score for the last iteration? return true if training should be terminated immediately, or false otherwise
terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
 
terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
 
terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
 
terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
 
terminate(double, double, Object[]) - Method in interface org.deeplearning4j.optimize.api.TerminationCondition
Whether to terminate based on the given metadata
terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.EpsTermination
 
terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.Norm2Termination
 
terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.ZeroDirection
 
terminationCondition - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
TerminationCondition - Interface in org.deeplearning4j.optimize.api
Created by agibsonccc on 12/24/14.
terminationConditions - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
TerminationConditions - Class in org.deeplearning4j.optimize.terminations
Created by agibsonccc on 12/24/14.
TerminationConditions() - Constructor for class org.deeplearning4j.optimize.terminations.TerminationConditions
 
TestDataSetIterator - Class in org.deeplearning4j.datasets.test
Track number of times the dataset iterator has been called
TestDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.test.TestDataSetIterator
 
testFileLabelsFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
testFilesFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
tf(int, int) - Static method in class org.deeplearning4j.util.MathUtils
Term frequency: 1+ log10(count)
tfidf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Return td * idf
theta(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
thread(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Executes calls to next() in a different thread
times(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the product of all numbers in the given array.
TimeSeriesUtils - Class in org.deeplearning4j.util
Basic time series utils
TimeSeriesUtils() - Constructor for class org.deeplearning4j.util.TimeSeriesUtils
 
title - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
toArray() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
toArray(T[]) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
toArray() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an array containing all of the elements in this applyTransformToDestination.
toArray(T[]) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns an array containing all of the elements in this applyTransformToDestination; the runtime type of the returned array is that of the specified array.
toBufferedImage(Image) - Static method in class org.deeplearning4j.util.ImageLoader
Deprecated.
Converts a given Image into a BufferedImage
toBufferedImageRGB(INDArray) - Static method in class org.deeplearning4j.util.ImageLoader
Deprecated.
Convert the given image to an rgb image
toByteArray(Serializable) - Static method in class org.deeplearning4j.util.SerializationUtils
Converts the given object to a byte array
toCSV() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
toDecimal(String) - Static method in class org.deeplearning4j.util.MathUtils
This will convert the given binary string to a decimal based integer
toHTML() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs Confusion Matrix in an HTML table.
toImage(INDArray) - Static method in class org.deeplearning4j.util.ImageLoader
Deprecated.
 
toJson() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
toJson() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
toJson() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Return this configuration as json
tolerance(double) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
tolerance - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
tolerance(double) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
tolerance - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
tolerance - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
tolerance(double) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
tolerance - Variable in class org.deeplearning4j.plot.Tsne
 
toLines() - Method in class org.deeplearning4j.util.StringGrid
 
toLogSpace() - Method in class org.deeplearning4j.berkeley.Counter
 
toMultiDataSet(DataSet) - Static method in class org.deeplearning4j.nn.graph.util.ComputationGraphUtil
Convert a DataSet to the equivalent MultiDataSet
toMultiDataSetIterator(DataSetIterator) - Static method in class org.deeplearning4j.nn.graph.util.ComputationGraphUtil
Convert a DataSetIterator to a MultiDataSetIterator, via an adaptor class
toPoints(List<INDArray>) - Static method in class org.deeplearning4j.clustering.cluster.Point
 
topologicalOrder - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
Indexes of graph vertices, in topological order.
topologicalSortOrder() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate a topological sort order for the vertices in the graph.
toString() - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation with the keys ordered by decreasing counts.
toString(int) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts and optionally prints one element per line.
toString(int) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString(Collection<String>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.Pair
 
toString() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order, displaying at most maxKeysToPrint elements and optionally printing one element per line.
toString() - Method in class org.deeplearning4j.berkeley.Triple
 
toString() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingResult
 
toString() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
 
toString() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
 
toString() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
 
toString() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
 
toString() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
 
toString() - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
 
toString() - Method in class org.deeplearning4j.eval.ConfusionMatrix
 
toString() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
toString() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
 
toString() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
 
toString() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
 
toString() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
toString() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
 
toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
 
toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
 
toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
 
toString() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
toString() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
 
toString() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
toString() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
toString() - Method in class org.deeplearning4j.util.Index
 
toString() - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
toString() - Method in class org.deeplearning4j.util.SummaryStatistics
 
toStringSortedByKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
toStringTabSeparated() - Method in class org.deeplearning4j.berkeley.Counter
 
totalCount() - Method in class org.deeplearning4j.berkeley.Counter
Finds the total of all counts in the counter.
totalCount() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total of all counts in sub-counters.
totalExamples() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
totalExamples - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
The total number of examples
totalExamples - Variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
Total examples in the iterator
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
Total examples in the iterator
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
The number of labels for a dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
The number of labels for the dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
The number of labels for the dataset
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
totalSize() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total number of (key, value) entries in the CounterMap (not their total counts).
toYaml() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
toYaml() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
toYaml() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Return this configuration as json
train - Variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
trainingFileLabelsFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainingFilesFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainingMode - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
Transform(Iterator<S>) - Constructor for class org.deeplearning4j.berkeley.Iterators.Transform
 
transform(S) - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
TransformingIterator(Iterator<I>, MyMethod<I, O>) - Constructor for class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
transpose() - Method in interface org.deeplearning4j.nn.api.Layer
Return a transposed copy of the weights/bias (this means reverse the number of inputs and outputs on the weights)
transpose() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
transpose() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
transpose() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
transpose() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
transpose() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
transpose() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
transpose() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
transpose() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
Tree - Class in org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive
Tree for a recursive neural tensor network based on Socher et al's work.
Tree(Tree) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Clone constructor (all but the children)
Tree(Tree, List<String>) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
Tree(List<String>) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
TreeMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
treeSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
trim(String, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns s if it's at most maxWidth chars, otherwise chops right side to fit.
trim(Object, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
 
Triple<S,T,U> - Class in org.deeplearning4j.berkeley
 
Triple(S, T, U) - Constructor for class org.deeplearning4j.berkeley.Triple
 
trueNegatives - Variable in class org.deeplearning4j.eval.Evaluation
 
trueNegatives() - Method in class org.deeplearning4j.eval.Evaluation
True negatives: correctly rejected
truePositives - Variable in class org.deeplearning4j.eval.Evaluation
 
truePositives() - Method in class org.deeplearning4j.eval.Evaluation
True positives: correctly rejected
truncate(int, int, int) - Static method in class org.deeplearning4j.berkeley.StringUtils
This returns a string from decimal digit smallestDigit to decimal digit biggest digit.
truncatedBPTTGradient() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Equivalent to backprop(), but calculates gradient for truncated BPTT instead.
Tsne - Class in org.deeplearning4j.plot
dl4j port of original t-sne algorithm described/implemented by van der Maaten and Hinton DECOMPOSED VERSION, DO NOT USE IT EVER
Tsne() - Constructor for class org.deeplearning4j.plot.Tsne
 
Tsne.Builder - Class in org.deeplearning4j.plot
 
type - Variable in class org.deeplearning4j.clustering.algorithm.strategy.BaseClusteringStrategy
 
type() - Method in interface org.deeplearning4j.nn.api.Layer
Returns the layer type
type() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
type() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
type() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
type() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
type() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
type() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
type() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
type() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
type() - Method in class org.deeplearning4j.nn.layers.recurrent.GRU
 
type() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
type() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 

U

UiConnectionInfo - Class in org.deeplearning4j.ui
POJO describing the location and credentials for DL4j UiServer instance
UiConnectionInfo() - Constructor for class org.deeplearning4j.ui.UiConnectionInfo
 
UiConnectionInfo.Builder - Class in org.deeplearning4j.ui
 
unEscapeString(String) - Static method in class org.deeplearning4j.util.StringUtils
Unescape commas in the string using the default escape char
unEscapeString(String, char, char) - Static method in class org.deeplearning4j.util.StringUtils
Unescape charToEscape in the string with the escape char escapeChar
unEscapeString(String, char, char[]) - Static method in class org.deeplearning4j.util.StringUtils
 
uniform(Random, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generate a uniform random number from the given rng
uniformBasedOnInAndOut(int[], int, int) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
Generate a random matrix with respect to the number of inputs and outputs.
UniformDistribution - Class in org.deeplearning4j.nn.conf.distribution
A uniform distribution.
UniformDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.UniformDistribution
Create a uniform real distribution using the given lower and upper bounds.
union(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
UnitVarianceProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Unit variance operation
UnitVarianceProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
 
unPack(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Unpacks a parameter matrix in to a transform of pairs(w,hbias) triples with layer wise
unsafeAdd(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
unsafeSubtract(double, double) - Static method in class org.deeplearning4j.berkeley.SloppyMath
 
unzipFileTo(String, String) - Static method in class org.deeplearning4j.util.ArchiveUtils
Extracts files to the specified destination
update(Gradient) - Method in interface org.deeplearning4j.nn.api.Layer
Update layer weights and biases with gradient change
update(INDArray, String) - Method in interface org.deeplearning4j.nn.api.Layer
Update layer weights and biases with gradient change
update(INDArray, String) - Method in interface org.deeplearning4j.nn.api.Model
Perform one update applying the gradient
update(Layer, Gradient, int, int) - Method in interface org.deeplearning4j.nn.api.Updater
Updater: updates the model
update(INDArray, String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
update(Gradient) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
update(MultiLayerNetwork) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Assigns the parameters of this model to the ones specified by this network.
update(INDArray, String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
update(Gradient) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
update(Layer, Gradient, int, int) - Method in class org.deeplearning4j.nn.updater.BaseUpdater
 
update(ComputationGraph, Gradient, int, int) - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
Update the gradients for the given ComputationGraph
update(Layer, Gradient, int, int) - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
update(INDArray, String) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
updateGradientAccordingToParams(Gradient, Model, int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
updateGradientAccordingToParams(Gradient, Model, int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
Updater - Interface in org.deeplearning4j.nn.api
Update the model
updater - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
updater(Updater) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Gradient updater.
updater - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
updater - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
updater(Updater) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Gradient updater.
Updater - Enum in org.deeplearning4j.nn.conf
All the possible different updaters
updater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
UpdaterAggregator - Interface in org.deeplearning4j.nn.updater.aggregate
 
UpdaterAggregatorImpl() - Constructor for class org.deeplearning4j.nn.updater.BaseUpdater.UpdaterAggregatorImpl
 
UpdaterCreator - Class in org.deeplearning4j.nn.updater
 
UpdaterCreator() - Constructor for class org.deeplearning4j.nn.updater.UpdaterCreator
 
updaterForVariable - Variable in class org.deeplearning4j.nn.updater.BaseUpdater
 
updateRnnStateWithTBPTTState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
uriToString(URI[]) - Static method in class org.deeplearning4j.util.StringUtils
 
useAdaGrad(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
useAdaGrad - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
useAdaGrad(boolean) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
useAdaGrad - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
useAdaGrad - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
useAdaGrad(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
useAdaGrad - Variable in class org.deeplearning4j.plot.Tsne
 
useBatchMean - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
 
useBatchMean - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
useCNN - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
 
useCurrent - Variable in class org.deeplearning4j.datasets.canova.RecordReaderDataSetIterator
 
useDropConnect - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
useDropConnect(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Use drop connect: multiply the coefficients by a binomial sampling wrt the dropout probability
useDropConnect - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
usePca(boolean) - Method in class org.deeplearning4j.plot.BarnesHutTsne.Builder
 
usePca - Variable in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
usePca(boolean) - Method in class org.deeplearning4j.plot.LegacyTsne.Builder
Deprecated.
 
usePca - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
usePca - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
usePca(boolean) - Method in class org.deeplearning4j.plot.Tsne.Builder
 
usePca - Variable in class org.deeplearning4j.plot.Tsne
 
useRegularization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
useRegularization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 

V

validate() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Check the configuration, make sure it is valid
validateInput() - Method in interface org.deeplearning4j.nn.api.Model
Validate the input
validateInput() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
validateInput() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
validateInput() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
validateInput() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
validateShapes(int, int, int, int, int, int, int, int) - Static method in class org.deeplearning4j.nn.layers.convolution.KernelValidationUtil
 
value() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
value - Variable in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
 
valueOf(String) - Static method in enum org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimizationType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategyType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.AlignmentMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator.AlignmentMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter.LabelingType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.BackpropType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.HiddenUnit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.VisibleUnit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.LearningRatePolicy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.Updater
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.nn.weights.WeightInit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
Returns the enum constant of this type with the specified name.
valueOf(char) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
 
values() - Static method in enum org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimizationType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.clustering.algorithm.strategy.ClusteringStrategyType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.datasets.canova.RecordReaderMultiDataSetIterator.AlignmentMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.datasets.canova.SequenceRecordReaderDataSetIterator.AlignmentMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.datasets.rearrange.LocalUnstructuredDataFormatter.LabelingType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.api.Layer.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.BackpropType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.HiddenUnit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.VisibleUnit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.LearningRatePolicy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.conf.Updater
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.deeplearning4j.nn.weights.WeightInit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns a Collection view of the values contained in this map.
values() - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
Returns an array containing the constants of this enum type, in the order they are declared.
var - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
variables - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
variables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
variance(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
VarianceVariationCondition - Class in org.deeplearning4j.clustering.algorithm.condition
 
VarianceVariationCondition(Condition, int) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.VarianceVariationCondition
 
varianceVariationLessThan(double, int) - Static method in class org.deeplearning4j.clustering.algorithm.condition.VarianceVariationCondition
 
vector() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
vectorize() - Method in class org.deeplearning4j.datasets.vectorizer.ImageVectorizer
 
vectorize() - Method in interface org.deeplearning4j.datasets.vectorizer.Vectorizer
Vectorizes the input source in to a dataset
Vectorizer - Interface in org.deeplearning4j.datasets.vectorizer
A Vectorizer at its essence takes an input source and converts it to a matrix for neural network consumption.
vectorLength(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the vector length (sqrt(sum(x_i))
vertexIndex - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
The index of this vertex
VertexIndices - Class in org.deeplearning4j.nn.graph.vertex
VertexIndices defines a pair of integers: the index of a vertex, and the edge number of that vertex.
VertexIndices() - Constructor for class org.deeplearning4j.nn.graph.vertex.VertexIndices
 
vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
Key: graph node.
vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
vertexName - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
 
vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
vertices - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
All GraphVertex objects in the network.
verticesMap - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
Map of vertices by name
VISIBLE_BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.PretrainParamInitializer
 
visibleUnit(RBM.VisibleUnit) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
 
visibleUnit - Variable in class org.deeplearning4j.nn.conf.layers.RBM
 
Viterbi - Class in org.deeplearning4j.util
Based on the impl from: https://gist.github.com/rmcgibbo/3915977
Viterbi(INDArray) - Constructor for class org.deeplearning4j.util.Viterbi
The possible outcomes for the chain.
VPTree - Class in org.deeplearning4j.clustering.vptree
Vantage point tree implementation
VPTree(INDArray, String, boolean) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>, CounterMap<DataPoint, DataPoint>, String, boolean) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>, String, boolean) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(INDArray, String) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>, CounterMap<DataPoint, DataPoint>, String) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>, String) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(INDArray) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>, CounterMap<DataPoint, DataPoint>) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree(List<DataPoint>) - Constructor for class org.deeplearning4j.clustering.vptree.VPTree
 
VPTree.Node - Class in org.deeplearning4j.clustering.vptree
 

W

w_0(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
w_1(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
WeakHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
weightInit - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
 
weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
Weight initialization scheme.
weightInit - Variable in class org.deeplearning4j.nn.conf.layers.Layer
 
weightInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
Weight initialization scheme.
WeightInit - Enum in org.deeplearning4j.nn.weights
Weight initialization scheme Distribution: Sample weights from a distribution based on shape of input Normalized: Normalize sample weights Size: Sample weights from bound uniform distribution using shape for min and max Uniform: Sample weights from bound uniform distribution (specify min and max) VI: Sample weights from variance normalized initialization (Glorot) Zeros: Generate weights as zeros Xavier: RELU: N(0,2/nIn): He et al.
WeightInitUtil - Class in org.deeplearning4j.nn.weights
Weight initialization utility
WeightInitUtil() - Constructor for class org.deeplearning4j.nn.weights.WeightInitUtil
 
weightMatrices(MultiLayerNetwork) - Static method in class org.deeplearning4j.util.MultiLayerUtil
Return the weight matrices for a multi layer network
weightsFor(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightsFor(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
width(int) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
width() - Method in class org.deeplearning4j.clustering.sptree.Cell
 
width - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
width - Static variable in class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
windows() - Method in class org.deeplearning4j.util.MovingWindowMatrix
Returns a list of non flattened moving window matrices
windows(boolean) - Method in class org.deeplearning4j.util.MovingWindowMatrix
Moving window, capture a row x column moving window of a given matrix
writeImageToPpm(int[][], String) - Static method in class org.deeplearning4j.datasets.mnist.MnistManager
Writes the given image in the given file using the PPM data format.
writeLinesTo(String) - Method in class org.deeplearning4j.util.StringGrid
 
writeModel(Model, File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
 
writeModel(Model, String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
 
writeModel(Model, OutputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
 
writeObject(Serializable, OutputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
Writes the object to the output stream THIS DOES NOT FLUSH THE STREAMMultiLayerNetwork

X

xHat - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
xMu - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
xVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the x values of the given vector.

Y

y - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
Y - Variable in class org.deeplearning4j.plot.Tsne
 
Y_GRAD - Static variable in class org.deeplearning4j.plot.BarnesHutTsne
 
yield() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Returns all of the labels for this node and all of its children (recursively)
yIncs - Variable in class org.deeplearning4j.plot.LegacyTsne
Deprecated.
 
yVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the odd indexed values for the given vector

Z

ZeroDirection - Class in org.deeplearning4j.optimize.terminations
Absolute magnitude of gradient is 0
ZeroDirection() - Constructor for class org.deeplearning4j.optimize.terminations.ZeroDirection
 
ZeroMeanAndUnitVariancePreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Zero mean and unit variance operation
ZeroMeanAndUnitVariancePreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
 
ZeroMeanPrePreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Zero mean and unit variance operation
ZeroMeanPrePreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
 
zFromPrevLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute input linear transformation (z) from previous layer Apply pre processing transformation where necessary
zip(Iterator<S>, Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links

Copyright © 2016. All Rights Reserved.