public class StochasticHessianFree extends BaseOptimizer
conf, GRADIENT_KEY, iteration, iterationListeners, lineMaximizer, log, model, oldScore, PARAMS_KEY, SCORE_KEY, SEARCH_DIR, searchState, step, stepFunction, stepMax, terminationConditions, updater
Constructor and Description |
---|
StochasticHessianFree(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<IterationListener> iterationListeners,
Collection<TerminationCondition> terminationConditions,
Model model) |
StochasticHessianFree(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<IterationListener> iterationListeners,
Model model) |
Modifier and Type | Method and Description |
---|---|
Pair<org.nd4j.linalg.api.ndarray.INDArray,Double> |
cgBackTrack(List<org.nd4j.linalg.api.ndarray.INDArray> chs,
org.nd4j.linalg.api.ndarray.INDArray p)
Iterate through the current list of gradients
and backtrack upon an optimal step
that improves the current score
|
Pair<List<Integer>,List<org.nd4j.linalg.api.ndarray.INDArray>> |
conjGradient(org.nd4j.linalg.api.ndarray.INDArray b,
org.nd4j.linalg.api.ndarray.INDArray x0,
org.nd4j.linalg.api.ndarray.INDArray preCon,
int numIterations) |
boolean |
isConverged() |
double |
lineSearch(double newScore,
org.nd4j.linalg.api.ndarray.INDArray params,
org.nd4j.linalg.api.ndarray.INDArray p)
Search with the proposed objective
|
boolean |
optimize()
Optimize call.
|
batchSize, checkTerminalConditions, getConf, getDefaultStepFunctionForOptimizer, getUpdater, gradientAndScore, postFirstStep, postStep, preProcessLine, score, setBatchSize, setupSearchState, updateGradientAccordingToParams
public StochasticHessianFree(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<IterationListener> iterationListeners, Model model)
public StochasticHessianFree(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<IterationListener> iterationListeners, Collection<TerminationCondition> terminationConditions, Model model)
public boolean isConverged()
public Pair<List<Integer>,List<org.nd4j.linalg.api.ndarray.INDArray>> conjGradient(org.nd4j.linalg.api.ndarray.INDArray b, org.nd4j.linalg.api.ndarray.INDArray x0, org.nd4j.linalg.api.ndarray.INDArray preCon, int numIterations)
public double lineSearch(double newScore, org.nd4j.linalg.api.ndarray.INDArray params, org.nd4j.linalg.api.ndarray.INDArray p)
newScore
- the new score to start withparams
- the params of the proposed steppublic Pair<org.nd4j.linalg.api.ndarray.INDArray,Double> cgBackTrack(List<org.nd4j.linalg.api.ndarray.INDArray> chs, org.nd4j.linalg.api.ndarray.INDArray p)
chs
- the proposed changespublic boolean optimize()
BaseOptimizer
optimize
in interface ConvexOptimizer
optimize
in class BaseOptimizer
Copyright © 2015. All Rights Reserved.