public class RNTN extends Object implements Layer
Modifier and Type | Class and Description |
---|---|
static class |
RNTN.Builder |
Layer.Type
Modifier and Type | Field and Description |
---|---|
protected String |
activationFunction |
protected NeuralNetConfiguration |
conf |
protected Collection<IterationListener> |
iterationListeners |
protected int |
numParameters |
protected String |
outputActivation |
protected org.nd4j.linalg.learning.AdaGrad |
paramAdaGrad |
protected double |
value |
Modifier and Type | Method and Description |
---|---|
void |
accumulateScore(double accum) |
org.nd4j.linalg.api.ndarray.INDArray |
activate() |
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input) |
org.nd4j.linalg.api.ndarray.INDArray |
activationMean() |
Pair<Gradient,Gradient> |
backWard(Gradient errors,
Gradient deltas,
org.nd4j.linalg.api.ndarray.INDArray activation,
String previousActivation) |
Gradient |
backwardGradient(org.nd4j.linalg.api.ndarray.INDArray activation,
Gradient errorSignal) |
String |
basicCategory(String category) |
int |
batchSize() |
Gradient |
calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
void |
clear() |
Layer |
clone() |
NeuralNetConfiguration |
conf() |
org.nd4j.linalg.api.ndarray.INDArray |
derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input) |
Gradient |
error(org.nd4j.linalg.api.ndarray.INDArray input) |
Gradient |
errorSignal(Gradient error,
org.nd4j.linalg.api.ndarray.INDArray input) |
void |
fit() |
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data) |
void |
fit(List<Tree> trainingBatch)
Trains the network on this mini batch and waits for the training set to complete
|
List<scala.concurrent.Future<Object>> |
fitAsync(List<Tree> trainingBatch)
Trains the network on this mini batch and returns a list of futures for each training job
|
void |
forwardPropagateTree(Tree tree)
This is the method to call for assigning labels and node vectors
to the Tree.
|
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryClassification(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryINDArray(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryTransform(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getClassWForNode(Tree node) |
org.nd4j.linalg.api.ndarray.INDArray |
getFeatureVector(String word) |
org.nd4j.linalg.api.ndarray.INDArray |
getINDArrayForNode(Tree node) |
Collection<IterationListener> |
getIterationListeners() |
int |
getNumParameters() |
ConvexOptimizer |
getOptimizer() |
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param) |
org.nd4j.linalg.api.ndarray.INDArray |
getParameters() |
org.nd4j.linalg.api.ndarray.INDArray |
getUnaryClassification(String category) |
double |
getValue() |
org.nd4j.linalg.api.ndarray.INDArray |
getValueGradient(List<Tree> trainingBatch) |
String |
getVocabWord(String word) |
org.nd4j.linalg.api.ndarray.INDArray |
getWForNode(Tree node) |
Gradient |
gradient() |
Pair<Gradient,Double> |
gradientAndScore() |
void |
initParams() |
org.nd4j.linalg.api.ndarray.INDArray |
input() |
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input) |
void |
merge(Layer layer,
int batchSize) |
int |
numParams() |
List<org.nd4j.linalg.api.ndarray.INDArray> |
output(List<Tree> trees)
output the prediction probabilities for each tree
|
org.nd4j.linalg.api.ndarray.INDArray |
params() |
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable() |
List<Integer> |
predict(List<Tree> trees)
output the top level labels for each tree
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x) |
org.nd4j.linalg.api.ndarray.INDArray |
randomTransformBlock() |
org.nd4j.linalg.api.ndarray.INDArray |
randomTransformMatrix() |
double |
score() |
void |
setConf(NeuralNetConfiguration conf) |
void |
setIterationListeners(Collection<IterationListener> listeners) |
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val) |
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for the model
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable) |
void |
setScore() |
org.nd4j.linalg.api.ndarray.INDArray |
transform(org.nd4j.linalg.api.ndarray.INDArray data) |
Layer |
transpose() |
Layer.Type |
type() |
void |
update(Gradient gradient) |
void |
validateInput() |
protected NeuralNetConfiguration conf
protected Collection<IterationListener> iterationListeners
protected double value
protected String activationFunction
protected String outputActivation
protected org.nd4j.linalg.learning.AdaGrad paramAdaGrad
protected int numParameters
public Collection<IterationListener> getIterationListeners()
getIterationListeners
in interface Layer
public void setIterationListeners(Collection<IterationListener> listeners)
setIterationListeners
in interface Layer
public org.nd4j.linalg.api.ndarray.INDArray randomTransformMatrix()
public org.nd4j.linalg.api.ndarray.INDArray randomTransformBlock()
public void fit(List<Tree> trainingBatch)
trainingBatch
- the trees to iterate onpublic List<scala.concurrent.Future<Object>> fitAsync(List<Tree> trainingBatch)
trainingBatch
- the trees to iterate onpublic org.nd4j.linalg.api.ndarray.INDArray getWForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getINDArrayForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getClassWForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getFeatureVector(String word)
public org.nd4j.linalg.api.ndarray.INDArray getUnaryClassification(String category)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryClassification(String left, String right)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryTransform(String left, String right)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryINDArray(String left, String right)
public void forwardPropagateTree(Tree tree)
public List<org.nd4j.linalg.api.ndarray.INDArray> output(List<Tree> trees)
trees
- the trees to predictpublic List<Integer> predict(List<Tree> trees)
trees
- the trees to predictpublic void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
public int getNumParameters()
public org.nd4j.linalg.api.ndarray.INDArray getParameters()
public org.nd4j.linalg.api.ndarray.INDArray getValueGradient(List<Tree> trainingBatch)
public double getValue()
public org.nd4j.linalg.api.ndarray.INDArray transform(org.nd4j.linalg.api.ndarray.INDArray data)
public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
public Pair<Gradient,Double> gradientAndScore()
gradientAndScore
in interface Model
public Layer.Type type()
public Gradient error(org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.api.ndarray.INDArray derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input)
derivativeActivation
in interface Layer
public Gradient calcGradient(Gradient layerError, org.nd4j.linalg.api.ndarray.INDArray indArray)
calcGradient
in interface Layer
public Gradient errorSignal(Gradient error, org.nd4j.linalg.api.ndarray.INDArray input)
errorSignal
in interface Layer
public Gradient backwardGradient(org.nd4j.linalg.api.ndarray.INDArray activation, Gradient errorSignal)
backwardGradient
in interface Layer
public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
public void initParams()
initParams
in interface Model
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
paramTable
in interface Model
public void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
setParamTable
in interface Model
public void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
public org.nd4j.linalg.api.ndarray.INDArray activationMean()
activationMean
in interface Layer
public NeuralNetConfiguration conf()
public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
public org.nd4j.linalg.api.ndarray.INDArray activate()
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input)
public Pair<Gradient,Gradient> backWard(Gradient errors, Gradient deltas, org.nd4j.linalg.api.ndarray.INDArray activation, String previousActivation)
public void accumulateScore(double accum)
accumulateScore
in interface Model
public void setConf(NeuralNetConfiguration conf)
public void validateInput()
validateInput
in interface Model
public ConvexOptimizer getOptimizer()
getOptimizer
in interface Model
Copyright © 2015. All Rights Reserved.