public class RNTN extends Object implements Model, Layer
Modifier and Type | Class and Description |
---|---|
static class |
RNTN.Builder |
Modifier and Type | Field and Description |
---|---|
protected org.nd4j.linalg.api.activation.ActivationFunction |
activationFunction |
protected int |
numParameters |
protected org.nd4j.linalg.api.activation.ActivationFunction |
outputActivation |
protected org.nd4j.linalg.learning.AdaGrad |
paramAdaGrad |
protected double |
value |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate() |
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input) |
org.nd4j.linalg.api.ndarray.INDArray |
activationMean() |
String |
basicCategory(String category) |
int |
batchSize() |
Layer |
clone() |
NeuralNetConfiguration |
conf() |
void |
fit() |
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data) |
void |
fit(List<Tree> trainingBatch)
Trains the network on this mini batch
|
void |
forwardPropagateTree(Tree tree)
This is the method to call for assigning labels and node vectors
to the Tree.
|
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryClassification(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryINDArray(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getBinaryTransform(String left,
String right) |
org.nd4j.linalg.api.ndarray.INDArray |
getClassWForNode(Tree node) |
org.nd4j.linalg.api.ndarray.INDArray |
getFeatureVector(String word) |
Gradient |
getGradient() |
org.nd4j.linalg.api.ndarray.INDArray |
getINDArrayForNode(Tree node) |
org.nd4j.linalg.api.ndarray.INDArray |
getInput() |
int |
getNumParameters() |
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param) |
org.nd4j.linalg.api.ndarray.INDArray |
getParameters() |
org.nd4j.linalg.api.ndarray.INDArray |
getUnaryClassification(String category) |
double |
getValue() |
org.nd4j.linalg.api.ndarray.INDArray |
getValueGradient() |
String |
getVocabWord(String word) |
org.nd4j.linalg.api.ndarray.INDArray |
getWForNode(Tree node) |
Pair<Gradient,Double> |
gradientAndScore() |
void |
initParams() |
org.nd4j.linalg.api.ndarray.INDArray |
input() |
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input) |
void |
merge(Layer layer,
int batchSize) |
int |
numParams() |
List<org.nd4j.linalg.api.ndarray.INDArray> |
output(List<Tree> trees)
output the prediction probabilities for each tree
|
org.nd4j.linalg.api.ndarray.INDArray |
params() |
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable() |
List<Integer> |
predict(List<Tree> trees)
output the top level labels for each tree
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x) |
org.nd4j.linalg.api.ndarray.INDArray |
randomTransformBlock() |
org.nd4j.linalg.api.ndarray.INDArray |
randomTransformMatrix() |
double |
score() |
void |
setConf(NeuralNetConfiguration conf) |
void |
setConfiguration(NeuralNetConfiguration conf) |
void |
setInput(org.nd4j.linalg.api.ndarray.INDArray input) |
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val) |
void |
setParameters(org.nd4j.linalg.api.ndarray.INDArray params) |
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params) |
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable) |
org.nd4j.linalg.api.ndarray.INDArray |
transform(org.nd4j.linalg.api.ndarray.INDArray data) |
Layer |
transpose() |
void |
update(Gradient gradient) |
void |
validateInput() |
protected double value
protected org.nd4j.linalg.api.activation.ActivationFunction activationFunction
protected org.nd4j.linalg.api.activation.ActivationFunction outputActivation
protected org.nd4j.linalg.learning.AdaGrad paramAdaGrad
protected int numParameters
public org.nd4j.linalg.api.ndarray.INDArray randomTransformMatrix()
public org.nd4j.linalg.api.ndarray.INDArray randomTransformBlock()
public void fit(List<Tree> trainingBatch)
trainingBatch
- the trees to iterate onpublic org.nd4j.linalg.api.ndarray.INDArray getWForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getINDArrayForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getClassWForNode(Tree node)
public org.nd4j.linalg.api.ndarray.INDArray getFeatureVector(String word)
public org.nd4j.linalg.api.ndarray.INDArray getUnaryClassification(String category)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryClassification(String left, String right)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryTransform(String left, String right)
public org.nd4j.linalg.api.ndarray.INDArray getBinaryINDArray(String left, String right)
public void forwardPropagateTree(Tree tree)
public List<org.nd4j.linalg.api.ndarray.INDArray> output(List<Tree> trees)
trees
- the trees to predictpublic List<Integer> predict(List<Tree> trees)
trees
- the trees to predictpublic void setParameters(org.nd4j.linalg.api.ndarray.INDArray params)
public int getNumParameters()
public org.nd4j.linalg.api.ndarray.INDArray getParameters()
public org.nd4j.linalg.api.ndarray.INDArray getValueGradient()
public double getValue()
public org.nd4j.linalg.api.ndarray.INDArray transform(org.nd4j.linalg.api.ndarray.INDArray data)
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
public Gradient getGradient()
getGradient
in interface Model
public Pair<Gradient,Double> gradientAndScore()
gradientAndScore
in interface Model
public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
public void initParams()
initParams
in interface Layer
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
paramTable
in interface Layer
public void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
setParamTable
in interface Layer
public void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
public org.nd4j.linalg.api.ndarray.INDArray activationMean()
activationMean
in interface Layer
public NeuralNetConfiguration conf()
public void setConfiguration(NeuralNetConfiguration conf)
setConfiguration
in interface Layer
public org.nd4j.linalg.api.ndarray.INDArray getInput()
public void setInput(org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
public org.nd4j.linalg.api.ndarray.INDArray activate()
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input)
public void setConf(NeuralNetConfiguration conf)
public void validateInput()
validateInput
in interface Model
Copyright © 2015. All rights reserved.