Package | Description |
---|---|
org.deeplearning4j.models.paragraphvectors |
Modifier and Type | Method and Description |
---|---|
ParagraphVectors.Builder |
ParagraphVectors.Builder.allowParallelTokenization(boolean allow)
This method enables/disables parallel tokenization.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.batchSize(int batchSize)
This method defines mini-batch size
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.elementsLearningAlgorithm(ElementsLearningAlgorithm<VocabWord> algorithm) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.elementsLearningAlgorithm(String algorithm) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.enableScavenger(boolean reallyEnable)
This method ebables/disables periodical vocab truncation during construction
Default value: disabled
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.epochs(int numEpochs)
This method defines number of epochs (iterations over whole training corpus) for training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.index(InvertedIndex<VocabWord> index) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(DocumentIterator iterator)
This method used to feed DocumentIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(LabelAwareDocumentIterator iterator)
This method used to feed LabelAwareDocumentIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(LabelAwareIterator iterator)
This method used to feed LabelAwareIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(LabelAwareSentenceIterator iterator)
This method used to feed LabelAwareSentenceIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(SentenceIterator iterator)
This method used to feed SentenceIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterate(SequenceIterator<VocabWord> iterator)
This method used to feed SequenceIterator, that contains training corpus, into ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.iterations(int iterations)
This method defines number of iterations done for each mini-batch during training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.labels(List<String> labels)
Deprecated.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.labelsSource(LabelsSource source)
This method attaches pre-defined labels source to ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.layerSize(int layerSize)
This method defines number of dimensions for output vectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.learningRate(double learningRate)
This method defines initial learning rate for model training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.limitVocabularySize(int limit)
This method sets vocabulary limit during construction.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.lookupTable(WeightLookupTable<VocabWord> lookupTable)
This method allows to define external WeightLookupTable to be used
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.minLearningRate(double minLearningRate)
This method defines minimal learning rate value for training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.minWordFrequency(int minWordFrequency)
This method defines minimal word frequency in training corpus.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.modelUtils(ModelUtils<VocabWord> modelUtils)
Sets ModelUtils that gonna be used as provider for utility methods: similarity(), wordsNearest(), accuracy(), etc
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.negativeSample(double negative)
This method defines whether negative sampling should be used or not
PLEASE NOTE: If you're going to use negative sampling, you might want to disable HierarchicSoftmax, which is enabled by default
Default value: 0
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.resetModel(boolean reallyReset)
This method defines whether model should be totally wiped out prior building, or not
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.sampling(double sampling)
This method defines whether subsampling should be used or not
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.seed(long randomSeed)
This method defines random seed for random numbers generator
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.sequenceLearningAlgorithm(SequenceLearningAlgorithm<VocabWord> algorithm) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.sequenceLearningAlgorithm(String algorithm) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.setVectorsListeners(Collection<VectorsListener<VocabWord>> vectorsListeners)
This method sets VectorsListeners for this SequenceVectors model
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.stopWords(Collection<VocabWord> stopList)
This method defines stop words that should be ignored during training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.stopWords(List<String> stopList)
This method defines stop words that should be ignored during training
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.tokenizerFactory(TokenizerFactory tokenizerFactory)
This method defines TokenizerFactory to be used for strings tokenization during training
PLEASE NOTE: If external VocabCache is used, the same TokenizerFactory should be used to keep derived tokens equal.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.trainElementsRepresentation(boolean trainElements)
This method defines, if words representation should be build together with documents representations.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.trainSequencesRepresentation(boolean trainSequences)
This method is hardcoded to TRUE, since that's whole point of ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.trainWordVectors(boolean trainElements)
This method defines, if words representations should be build together with documents representations.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.unknownElement(VocabWord element)
This method allows you to specify SequenceElement that will be used as UNK element, if UNK is used
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.useAdaGrad(boolean reallyUse)
This method defines whether adaptive gradients should be used or not
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.useExistingWordVectors(WordVectors vec)
This method allows you to use pre-built WordVectors model (Word2Vec or GloVe) for ParagraphVectors.
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.useHierarchicSoftmax(boolean reallyUse)
This method enables/disables Hierarchic softmax
Default value: enabled
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.usePreciseWeightInit(boolean reallyUse) |
ParagraphVectors.Builder |
ParagraphVectors.Builder.useUnknown(boolean reallyUse)
This method allows you to specify, if UNK word should be used internally
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.useVariableWindow(int... windows)
This method has no effect for ParagraphVectors
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.vocabCache(VocabCache<VocabWord> vocabCache)
This method allows to define external VocabCache to be used
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.windowSize(int windowSize)
This method defines context window size
|
ParagraphVectors.Builder |
ParagraphVectors.Builder.workers(int numWorkers)
This method defines maximum number of concurrent threads available for training
|
Copyright © 2018. All rights reserved.