Package | Description |
---|---|
org.deeplearning4j.nn.conf.layers | |
org.deeplearning4j.nn.params |
Modifier and Type | Method and Description |
---|---|
ParamInitializer |
SubsamplingLayer.initializer() |
ParamInitializer |
OutputLayer.initializer() |
ParamInitializer |
BatchNormalization.initializer() |
ParamInitializer |
GravesLSTM.initializer() |
ParamInitializer |
EmbeddingLayer.initializer() |
ParamInitializer |
ConvolutionLayer.initializer() |
ParamInitializer |
AutoEncoder.initializer() |
abstract ParamInitializer |
Layer.initializer() |
ParamInitializer |
GravesBidirectionalLSTM.initializer() |
ParamInitializer |
RBM.initializer() |
ParamInitializer |
LocalResponseNormalization.initializer() |
ParamInitializer |
RnnOutputLayer.initializer() |
ParamInitializer |
DenseLayer.initializer() |
ParamInitializer |
ActivationLayer.initializer() |
Modifier and Type | Class and Description |
---|---|
class |
BatchNormalizationParamInitializer
Batch normalization variable init
|
class |
ConvolutionParamInitializer
Initialize convolution params.
|
class |
DefaultParamInitializer
Static weight initializer with just a weight matrix and a bias
|
class |
EmptyParamInitializer |
class |
GravesBidirectionalLSTMParamInitializer
LSTM Parameter initializer, for LSTM based on
Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
|
class |
GravesLSTMParamInitializer
LSTM Parameter initializer, for LSTM based on
Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
|
class |
PretrainParamInitializer
Pretrain weight initializer.
|
Copyright © 2016. All Rights Reserved.