public abstract class BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> extends BaseLayer<LayerConfT>
Layer.TrainingMode, Layer.Type
conf, dropoutApplied, dropoutMask, gradient, gradientsFlattened, gradientViews, index, input, iterationListeners, maskArray, optimizer, params, paramsFlattened, score, solver
Constructor and Description |
---|
BasePretrainNetwork(NeuralNetConfiguration conf) |
BasePretrainNetwork(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
protected Gradient |
createGradient(org.nd4j.linalg.api.ndarray.INDArray wGradient,
org.nd4j.linalg.api.ndarray.INDArray vBiasGradient,
org.nd4j.linalg.api.ndarray.INDArray hBiasGradient) |
org.nd4j.linalg.api.ndarray.INDArray |
getCorruptedInput(org.nd4j.linalg.api.ndarray.INDArray x,
double corruptionLevel)
Corrupts the given input by doing a binomial sampling
given the corruption level
|
int |
numParams()
The number of parameters for the model, for backprop (i.e., excluding visible bias)
|
int |
numParams(boolean backwards)
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
org.nd4j.linalg.api.ndarray.INDArray |
params(boolean backprop) |
abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
Sample the hidden distribution given the visible
|
abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
Sample the visible distribution given the hidden
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
protected void |
setScoreWithZ(org.nd4j.linalg.api.ndarray.INDArray z) |
accumulateScore, activate, activate, activate, activate, activate, activate, activationMean, applyDropOutIfNecessary, applyLearningRateScoreDecay, backpropGradient, batchSize, calcGradient, calcL1, calcL2, clear, clone, computeGradientAndScore, conf, createGradient, derivativeActivation, error, fit, fit, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, initParams, input, iterate, layerConf, merge, paramTable, preOutput, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, toString, transpose, type, update, update, validateInput
public BasePretrainNetwork(NeuralNetConfiguration conf)
public BasePretrainNetwork(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.api.ndarray.INDArray getCorruptedInput(org.nd4j.linalg.api.ndarray.INDArray x, double corruptionLevel)
x
- the input to corruptcorruptionLevel
- the corruption valueprotected Gradient createGradient(org.nd4j.linalg.api.ndarray.INDArray wGradient, org.nd4j.linalg.api.ndarray.INDArray vBiasGradient, org.nd4j.linalg.api.ndarray.INDArray hBiasGradient)
public int numParams(boolean backwards)
Model
numParams
in interface Model
numParams
in class BaseLayer<LayerConfT extends BasePretrainNetwork>
public abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
v
- the visible to sample frompublic abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
h
- the hidden to sample fromprotected void setScoreWithZ(org.nd4j.linalg.api.ndarray.INDArray z)
setScoreWithZ
in class BaseLayer<LayerConfT extends BasePretrainNetwork>
public org.nd4j.linalg.api.ndarray.INDArray params()
BaseLayer
params
in interface Model
params
in class BaseLayer<LayerConfT extends BasePretrainNetwork>
public org.nd4j.linalg.api.ndarray.INDArray params(boolean backprop)
public int numParams()
numParams
in interface Model
numParams
in class BaseLayer<LayerConfT extends BasePretrainNetwork>
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Model
setParams
in interface Model
setParams
in class BaseLayer<LayerConfT extends BasePretrainNetwork>
params
- the parameters for the modelCopyright © 2016. All Rights Reserved.