Package | Description |
---|---|
org.deeplearning4j.nn.conf | |
org.deeplearning4j.nn.conf.layers.setup |
Modifier and Type | Class and Description |
---|---|
static class |
NeuralNetConfiguration.ListBuilder
Fluent interface for building a list of configurations
|
Modifier and Type | Method and Description |
---|---|
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.backprop(boolean backprop)
Whether to do back prop or not
|
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.backpropType(BackpropType type)
The type of backprop.
|
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.cnnInputSize(int[] cnnInputSize)
Deprecated.
use
setInputType(InputType) with InputType.convolutional(height,width,depth) , for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth) |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.cnnInputSize(int height,
int width,
int depth)
Deprecated.
use
setInputType(InputType) with InputType.convolutional(height,width,depth) , for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth) |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.confs(List<NeuralNetConfiguration> confs) |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.inputPreProcessor(Integer layer,
InputPreProcessor processor)
Specify the processors.
|
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.inputPreProcessors(Map<Integer,InputPreProcessor> processors) |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.pretrain(boolean pretrain)
Whether to do pre train or not
|
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.setInputType(InputType inputType) |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.tBPTTBackwardLength(int backwardLength)
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
MultiLayerConfiguration.Builder |
MultiLayerConfiguration.Builder.tBPTTForwardLength(int forwardLength)
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller) Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
Modifier and Type | Field and Description |
---|---|
protected MultiLayerConfiguration.Builder |
ConvolutionLayerSetup.conf
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
Layer |
ConvolutionLayerSetup.getLayer(int i,
MultiLayerConfiguration.Builder builder)
Deprecated.
|
Constructor and Description |
---|
ConvolutionLayerSetup(MultiLayerConfiguration.Builder builder,
int height,
int width,
int channels)
Deprecated.
Use
setInputType(InputType) to set nIns
and add preprocessors as required. This can be done using builder.setInputType(InputType.convolutional(height, width, channels))
For image data that has been flattened into a row vector per example (shape [minibatchSize,depth*height*width])
instead use InputType.convolutionalFlat(height,width,depth) . |
Copyright © 2016. All Rights Reserved.