Modifier and Type | Method and Description |
---|---|
Gradient |
Layer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray)
Calculate the gradient
|
Gradient |
Layer.error(org.nd4j.linalg.api.ndarray.INDArray input)
Calculate error with respect to the
current layer.
|
Gradient |
Model.gradient()
Calculate a gradient
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
Layer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
Pair<Gradient,Double> |
Model.gradientAndScore()
Get the gradient and score
|
Modifier and Type | Method and Description |
---|---|
Gradient |
Layer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray)
Calculate the gradient
|
void |
Model.update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
Updater.update(Layer layer,
Gradient gradient,
int iteration,
int miniBatchSize)
Updater: updates the model
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RecurrentLayer.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackLength)
Truncated BPTT equivalent of Layer.backpropGradient().
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultGradient
Default gradient implementation.
|
Modifier and Type | Field and Description |
---|---|
protected Gradient |
ComputationGraph.gradient |
Modifier and Type | Method and Description |
---|---|
Gradient |
ComputationGraph.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray... epsilons)
Calculate the gradient of the network with respect to some external errors.
|
Gradient |
ComputationGraph.gradient() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
ComputationGraph.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
void |
ComputationGraph.update(Gradient gradient) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
GraphVertex.doBackward(boolean tbptt)
Do backward pass
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
StackVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
LayerVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
SubsetVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
PreprocessorVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
UnstackVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
MergeVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
ElementWiseVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
InputVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
L2Vertex.doBackward(boolean tbptt) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
LastTimeStepVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
DuplicateToTimeSeriesVertex.doBackward(boolean tbptt) |
Modifier and Type | Field and Description |
---|---|
protected Gradient |
BaseLayer.gradient |
Modifier and Type | Method and Description |
---|---|
Gradient |
LossLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
BaseLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
ActivationLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
protected Gradient |
BaseLayer.createGradient(org.nd4j.linalg.api.ndarray.INDArray... gradients)
Create a gradient list based on the passed in parameters.
|
protected Gradient |
BasePretrainNetwork.createGradient(org.nd4j.linalg.api.ndarray.INDArray wGradient,
org.nd4j.linalg.api.ndarray.INDArray vBiasGradient,
org.nd4j.linalg.api.ndarray.INDArray hBiasGradient) |
Gradient |
BaseLayer.error(org.nd4j.linalg.api.ndarray.INDArray errorSignal) |
Gradient |
LossLayer.gradient()
Gets the gradient from one training iteration
|
Gradient |
BaseLayer.gradient() |
Gradient |
BaseOutputLayer.gradient()
Gets the gradient from one training iteration
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BasePretrainNetwork.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LossLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BaseLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BaseOutputLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ActivationLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,Double> |
LossLayer.gradientAndScore() |
Pair<Gradient,Double> |
BaseLayer.gradientAndScore() |
Pair<Gradient,Double> |
BaseOutputLayer.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Gradient |
LossLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
BaseLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
ActivationLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
void |
BaseLayer.update(Gradient gradient) |
Modifier and Type | Method and Description |
---|---|
Gradient |
ConvolutionLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray weights,
org.nd4j.linalg.api.ndarray.INDArray delta,
int[] kernel,
int[] strides,
int[] pad,
org.nd4j.linalg.api.ndarray.INDArray biasGradView,
org.nd4j.linalg.api.ndarray.INDArray weightGradView,
String afn,
ConvolutionLayer.AlgoMode mode,
ConvolutionMode convolutionMode) |
Modifier and Type | Method and Description |
---|---|
Gradient |
ConvolutionLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Modifier and Type | Method and Description |
---|---|
Gradient |
SubsamplingLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
SubsamplingLayer.error(org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
SubsamplingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
SubsamplingHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
int[] kernel,
int[] strides,
int[] pad,
SubsamplingLayer.PoolingType poolingType,
ConvolutionMode convolutionMode) |
Modifier and Type | Method and Description |
---|---|
Gradient |
SubsamplingLayer.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
EmbeddingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RBM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Modifier and Type | Method and Description |
---|---|
Gradient |
BatchNormalization.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
LocalResponseNormalization.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
BatchNormalization.error(org.nd4j.linalg.api.ndarray.INDArray input) |
Gradient |
BatchNormalization.gradient() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BatchNormalization.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LocalResponseNormalization.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LocalResponseNormalizationHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
double k,
double n,
double alpha,
double beta) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BatchNormalizationHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
int[] shape,
org.nd4j.linalg.api.ndarray.INDArray gamma,
org.nd4j.linalg.api.ndarray.INDArray dGammaView,
org.nd4j.linalg.api.ndarray.INDArray dBetaView,
double eps) |
Modifier and Type | Method and Description |
---|---|
Gradient |
BatchNormalization.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Gradient |
LocalResponseNormalization.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray indArray) |
Modifier and Type | Method and Description |
---|---|
Gradient |
GravesLSTM.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
GravesBidirectionalLSTM.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
GravesLSTM.gradient() |
Gradient |
GravesBidirectionalLSTM.gradient() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesLSTM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesBidirectionalLSTM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RnnOutputLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
static Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LSTMHelpers.backpropGradientHelper(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray recurrentWeights,
org.nd4j.linalg.api.ndarray.INDArray inputWeights,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
boolean truncatedBPTT,
int tbpttBackwardLength,
FwdPassReturn fwdPass,
boolean forwards,
String inputWeightKey,
String recurrentWeightKey,
String biasWeightKey,
Map<String,org.nd4j.linalg.api.ndarray.INDArray> gradientViews) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesLSTM.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackwardLength) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesBidirectionalLSTM.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackwardLength) |
Modifier and Type | Method and Description |
---|---|
Gradient |
GravesLSTM.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
GravesBidirectionalLSTM.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Modifier and Type | Field and Description |
---|---|
protected Gradient |
MultiLayerNetwork.gradient |
Modifier and Type | Method and Description |
---|---|
Gradient |
MultiLayerNetwork.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
Gradient |
MultiLayerNetwork.error(org.nd4j.linalg.api.ndarray.INDArray errorSignal) |
Gradient |
MultiLayerNetwork.gradient() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
MultiLayerNetwork.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
protected Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
MultiLayerNetwork.calcBackpropGradients(org.nd4j.linalg.api.ndarray.INDArray epsilon,
boolean withOutputLayer)
Calculate gradients and errors.
|
Pair<Gradient,Double> |
MultiLayerNetwork.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Gradient |
MultiLayerNetwork.calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation) |
void |
MultiLayerNetwork.update(Gradient gradient) |
Modifier and Type | Method and Description |
---|---|
void |
LayerUpdater.preApply(Layer layer,
Gradient gradient,
int iteration)
Apply gradient normalization: scale based on L2, clipping etc.
|
void |
LayerUpdater.update(Layer layer,
Gradient gradient,
int iteration,
int miniBatchSize) |
void |
MultiLayerUpdater.update(Layer layer,
Gradient gradient,
int iteration,
int batchSize) |
Modifier and Type | Method and Description |
---|---|
void |
ComputationGraphUpdater.update(ComputationGraph graph,
Gradient gradient,
int iteration,
int batchSize)
Update the gradients for the given ComputationGraph
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
ConvexOptimizer.gradientAndScore()
The gradient and score for this optimizer
|
Modifier and Type | Method and Description |
---|---|
void |
ConvexOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize)
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
|
Modifier and Type | Method and Description |
---|---|
void |
ConvexOptimizer.setupSearchState(Pair<Gradient,Double> pair)
Based on the gradient and score
setup a search state
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
BaseOptimizer.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
void |
BaseOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize) |
Modifier and Type | Method and Description |
---|---|
void |
BaseOptimizer.setupSearchState(Pair<Gradient,Double> pair)
Setup the initial search state
|
void |
LBFGS.setupSearchState(Pair<Gradient,Double> pair) |
Copyright © 2016. All Rights Reserved.