Modifier and Type | Class and Description |
---|---|
class |
ActivationLayer
Activation Layer
Used to apply activation on input and corresponding derivative on epsilon.
|
class |
BaseOutputLayer<LayerConfT extends BaseOutputLayer>
Output layer with different objective
in co-occurrences for different objectives.
|
class |
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork>
Baseline class for any Neural Network used
as a layer in a deep network *
|
class |
LossLayer
LossLayer is a flexible output "layer" that performs a loss function on
an input without MLP logic.
|
class |
OutputLayer
Output layer with different objective
incooccurrences for different objectives.
|
Modifier and Type | Class and Description |
---|---|
class |
ConvolutionLayer
Convolution layer
|
Modifier and Type | Class and Description |
---|---|
class |
SubsamplingLayer
Subsampling layer.
|
Modifier and Type | Class and Description |
---|---|
class |
AutoEncoder
Autoencoder.
|
Modifier and Type | Class and Description |
---|---|
class |
DenseLayer |
Modifier and Type | Class and Description |
---|---|
class |
EmbeddingLayer
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1)
as input.
|
Modifier and Type | Class and Description |
---|---|
class |
RBM
Restricted Boltzmann Machine.
|
Modifier and Type | Class and Description |
---|---|
class |
BatchNormalization
Batch normalization layer.
|
class |
LocalResponseNormalization
Deep neural net normalization approach normalizes activations between layers
"brightness normalization"
Used for nets like AlexNet
|
Modifier and Type | Class and Description |
---|---|
class |
BaseRecurrentLayer<LayerConfT extends Layer> |
class |
GravesBidirectionalLSTM
RNN tutorial: http://deeplearning4j.org/usingrnns.html
READ THIS FIRST
Bdirectional LSTM layer implementation.
|
class |
GravesLSTM
LSTM layer implementation.
|
class |
RnnOutputLayer
Recurrent Neural Network Output Layer.
Handles calculation of gradients etc for various objective functions. Functionally the same as OutputLayer, but handles output and label reshaping automatically. Input and output activations are same as other RNN layers: 3 dimensions with shape [miniBatchSize,nIn,timeSeriesLength] and [miniBatchSize,nOut,timeSeriesLength] respectively. |
Copyright © 2016. All Rights Reserved.