int cursor
int numOutcomes
int inputColumns
org.nd4j.linalg.dataset.DataSet curr
int totalExamples
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
int batchSize
LinkedBlockingQueue<E> queue
List<E> labels
int numFeatures
int numLabels
org.nd4j.linalg.dataset.api.iterator.DataSetIterator baseIterator
BlockingQueue<E> blockingQueue
Thread thread
org.deeplearning4j.datasets.iterator.AsyncDataSetIterator.IteratorRunnable runnable
org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator
LinkedBlockingQueue<E> queue
org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator.IteratorRunnable runnable
Thread thread
int batch
int numExamples
BaseDataFetcher fetcher
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
Iterator<E> iterator
int batchSize
LinkedList<E> queued
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
int inputColumns
int totalOutcomes
int cursor
Iterator<E> iterator
int batchSize
LinkedList<E> queued
org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor preProcessor
int epochs
int numEpochs
int batch
int lastBatch
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iter
org.nd4j.linalg.dataset.DataSet ds
List<E> batchedDS
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
boolean newEpoch
int queueSize
boolean async
AtomicLong iterationsCounter
long totalIterations
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iter
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.DataSet sampleFrom
int batchSize
int totalNumberSamples
int numTimesSampled
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.DataSet data
int windowRows
int windowColumns
int cursor
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iter
org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor preProcessor
EarlyStoppingModelSaver<T extends Model> modelSaver
List<E> epochTerminationConditions
List<E> iterationTerminationConditions
boolean saveLastModel
int evaluateEveryNEpochs
ScoreCalculator<T extends Model> scoreCalculator
org.nd4j.linalg.dataset.api.iterator.DataSetIterator dataSetIterator
boolean average
org.nd4j.linalg.dataset.api.iterator.DataSetIterator dataSetIterator
org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator multiDataSetIterator
boolean average
double bestExpectedScore
boolean lesserBetter
int maxEpochs
double maxScore
long maxTimeAmount
TimeUnit maxTimeUnit
long initializationTime
long endTime
int maxEpochsWithNoImprovement
int bestEpoch
double bestScore
double minImprovement
int topN
int topNCorrectCount
int topNTotalCount
Counter<E> truePositives
Counter<E> falsePositives
Counter<E> trueNegatives
Counter<E> falseNegatives
ConfusionMatrix<T extends Comparable<? super T>> confusion
int numRowCounter
List<E> labelsList
Map<K,V> confusionMatrixMetaData
Map<K,V> vertices
Map<K,V> vertexInputs
List<E> networkInputs
List<E> networkOutputs
boolean pretrain
boolean backprop
BackpropType backpropType
int tbpttFwdLength
int tbpttBackLength
NeuralNetConfiguration defaultConfiguration
Layer layer
double leakyreluAlpha
boolean miniBatch
int numIterations
int maxNumLineSearchIterations
long seed
OptimizationAlgorithm optimizationAlgo
List<E> variables
StepFunction stepFunction
boolean useRegularization
boolean useDropConnect
boolean minimize
Map<K,V> learningRateByParam
Map<K,V> l1ByParam
Map<K,V> l2ByParam
LearningRatePolicy learningRatePolicy
double lrPolicyDecayRate
double lrPolicySteps
double lrPolicyPower
boolean pretrain
int numberOfTrials
double probabilityOfSuccess
double mean
double std
double upper
double lower
ElementWiseVertex.Op op
NeuralNetConfiguration layerConf
InputPreProcessor preProcessor
boolean outputVertex
InputPreProcessor preProcessor
InputType outputType
int from
int to
int from
int stackSize
String inputName
String maskArrayInputName
int height
int width
int depth
int height
int width
int depth
int size
int size
double corruptionLevel
double sparsity
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction lossFunction
String customLossFunction
double visibleBiasInit
int preTrainIterations
double decay
double eps
boolean isMinibatch
double gamma
double beta
boolean lockGammaBeta
ConvolutionMode convolutionMode
int[] kernelSize
int[] stride
int[] padding
ConvolutionLayer.AlgoMode cudnnAlgoMode
int nIn
int nOut
double forgetGateBiasInit
double forgetGateBiasInit
String layerName
String activationFunction
WeightInit weightInit
double biasInit
Distribution dist
double learningRate
double biasLearningRate
Map<K,V> learningRateSchedule
double momentum
Map<K,V> momentumSchedule
double l1
double l2
double biasL1
double biasL2
double dropOut
Updater updater
double rho
double epsilon
double rmsDecay
double adamMeanDecay
double adamVarDecay
GradientNormalization gradientNormalization
double gradientNormalizationThreshold
double n
double k
double beta
double alpha
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
RBM.HiddenUnit hiddenUnit
RBM.VisibleUnit visibleUnit
int k
double sparsity
ConvolutionMode convolutionMode
SubsamplingLayer.PoolingType poolingType
int[] kernelSize
int[] stride
int[] padding
int inputHeight
int inputWidth
int numChannels
int inputHeight
int inputWidth
int numChannels
int product
InputPreProcessor[] inputPreProcessors
int inputHeight
int inputWidth
int numChannels
int[] shape
int[] fromShape
int[] toShape
boolean dynamic
int inputHeight
int inputWidth
int numChannels
int product
org.nd4j.linalg.api.ndarray.INDArray columnStds
ComputationGraphConfiguration configuration
boolean initCalled
org.nd4j.linalg.api.ndarray.INDArray flattenedParams
Gradient gradient
double score
boolean initDone
GraphVertex[] vertices
Map<K,V> verticesMap
int[] topologicalOrder
Layer[] layers
int numInputArrays
int numOutputArrays
NeuralNetConfiguration defaultConfiguration
Collection<E> listeners
Collection<E> trainingListeners
ComputationGraph graph
String vertexName
int vertexIndex
VertexIndices[] inputVertices
VertexIndices[] outputVertices
org.nd4j.linalg.api.ndarray.INDArray[] inputs
org.nd4j.linalg.api.ndarray.INDArray epsilon
int vertexIndex
int vertexEdgeNumber
ElementWiseVertex.Op op
int nInForwardPass
Layer layer
InputPreProcessor layerPreProcessor
boolean outputVertex
int[][] forwardPassShapes
int fwdPassRank
InputPreProcessor preProcessor
int from
int to
int[] forwardShape
int from
int stackSize
int[] forwardShape
int step
String inputName
int inputVertexIndex
String inputName
int inputIdx
int[] fwdPassShape
int[] fwdPassTimeSteps
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray paramsFlattened
org.nd4j.linalg.api.ndarray.INDArray gradientsFlattened
Map<K,V> params
NeuralNetConfiguration conf
org.nd4j.linalg.api.ndarray.INDArray dropoutMask
boolean dropoutApplied
double score
ConvexOptimizer optimizer
Gradient gradient
Collection<E> iterationListeners
int index
org.nd4j.linalg.api.ndarray.INDArray maskArray
Solver solver
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
ConvolutionHelper helper
ConvolutionMode convolutionMode
SubsamplingHelper helper
ConvolutionMode convolutionMode
org.nd4j.linalg.api.ndarray.INDArray vector
org.nd4j.linalg.api.ndarray.INDArray prediction
List<E> children
double error
Tree parent
String headWord
String value
String label
String type
int goldLabel
List<E> tokens
List<E> tags
String parse
int begin
int end
long seed
org.nd4j.linalg.api.ndarray.INDArray sigma
org.nd4j.linalg.api.ndarray.INDArray hiddenSigma
BatchNormalizationHelper helper
int index
List<E> listeners
org.nd4j.linalg.api.ndarray.INDArray std
org.nd4j.linalg.api.ndarray.INDArray xMu
org.nd4j.linalg.api.ndarray.INDArray xHat
LocalResponseNormalizationHelper helper
double k
double n
double alpha
double beta
int halfN
org.nd4j.linalg.api.ndarray.INDArray activations
org.nd4j.linalg.api.ndarray.INDArray unitScale
org.nd4j.linalg.api.ndarray.INDArray scale
Map<K,V> stateMap
Map<K,V> tBpttStateMap
Layer[] layers
LinkedHashMap<K,V> layerMap
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray labels
boolean initCalled
Collection<E> listeners
Collection<E> trainingListeners
NeuralNetConfiguration defaultConfiguration
MultiLayerConfiguration layerWiseConfigurations
Gradient gradient
org.nd4j.linalg.api.ndarray.INDArray epsilon
double score
boolean initDone
org.nd4j.linalg.api.ndarray.INDArray flattenedParams
org.nd4j.linalg.api.ndarray.INDArray mask
int layerIndex
Updater[] layerUpdaters
org.nd4j.linalg.api.ndarray.INDArray viewArray
Collection<E> listeners
boolean invoked
boolean invoked
int iterations
long totalIterationCount
boolean printMean
boolean printHeader
boolean printMinMax
boolean printMeanAbsValue
File file
java.nio.file.Path filePath
boolean outputToConsole
boolean outputToFile
boolean outputToLogger
String delimiter
int writeFailureCount
int frequency
double samplesPerSec
double batchesPerSec
long lastTime
AtomicLong iterationCount
boolean reportScore
boolean reportSample
boolean reportBatch
boolean reportIteration
boolean reportTime
int printIterations
boolean invoked
long iterCount
Model layer
StepFunction stepFunction
ConvexOptimizer optimizer
int maxIterations
double stepMax
boolean minObjectiveFunction
double relTolx
double absTolx
double ALF
NeuralNetConfiguration conf
int iteration
StepFunction stepFunction
Collection<E> iterationListeners
Collection<E> terminationConditions
Model model
BackTrackLineSearch lineMaximizer
Updater updater
ComputationGraphUpdater computationGraphUpdater
double step
int batchSize
double score
double oldScore
double stepMax
Map<K,V> searchState
int m
double eps
double tolerance
double gradientTolerance
File dir
Queue<E> paths
ScheduledExecutorService executorService
AtomicBoolean running
Queue<E> save
String sep
int numColumns
double metaStability
double pCorrect
org.nd4j.linalg.api.ndarray.INDArray possibleLabels
int states
double logPCorrect
double logPIncorrect
double logMetaInstability
double logOfDiangnalTProb
double logStates
Copyright © 2016. All Rights Reserved.