Modifier and Type | Method and Description |
---|---|
Pair<K,V> |
CounterMap.argMax()
Finds the key with maximum count.
|
static <S,T> Pair<S,T> |
Pair.makePair(S first,
T second) |
static <S,T> Pair<S,T> |
Pair.newPair(S first,
T second) |
Pair<S,F> |
Pair.reverse() |
Modifier and Type | Method and Description |
---|---|
Iterator<Pair<K,V>> |
CounterMap.getPairIterator() |
static <S,T> Iterator<Pair<S,T>> |
Iterators.zip(Iterator<S> s,
Iterator<T> t) |
Modifier and Type | Method and Description |
---|---|
int |
Pair.LexicographicPairComparator.compare(Pair<F,S> pair1,
Pair<F,S> pair2) |
int |
Pair.LexicographicPairComparator.compare(Pair<F,S> pair1,
Pair<F,S> pair2) |
int |
Pair.DefaultLexicographicPairComparator.compare(Pair<F,S> o1,
Pair<F,S> o2) |
int |
Pair.DefaultLexicographicPairComparator.compare(Pair<F,S> o1,
Pair<F,S> o2) |
int |
Pair.FirstComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.FirstComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.ReverseFirstComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.ReverseFirstComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.SecondComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.SecondComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.ReverseSecondComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.ReverseSecondComparator.compare(Pair<S,T> p1,
Pair<S,T> p2) |
int |
Pair.compareTo(Pair<F,S> o)
Compares this object with the specified object for order.
|
Constructor and Description |
---|
AbstractDataSetIterator(Iterable<Pair<T,T>> iterable,
int batchSize) |
DoublesDataSetIterator(Iterable<Pair<double[],double[]>> iterable,
int batchSize) |
FloatsDataSetIterator(Iterable<Pair<float[],float[]>> iterable,
int batchSize) |
INDArrayDataSetIterator(Iterable<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> iterable,
int batchSize) |
Modifier and Type | Field and Description |
---|---|
protected Map<Pair<Integer,Integer>,List<Object>> |
Evaluation.confusionMatrixMetaData |
Modifier and Type | Method and Description |
---|---|
static Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
EvaluationUtils.extractNonMaskedTimeSteps(org.nd4j.linalg.api.ndarray.INDArray labels,
org.nd4j.linalg.api.ndarray.INDArray predicted,
org.nd4j.linalg.api.ndarray.INDArray outputMask) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
Layer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
Layer.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in in the layer as appropriate.
|
Pair<Gradient,Double> |
Model.gradientAndScore()
Get the gradient and score
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RecurrentLayer.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackLength)
Truncated BPTT equivalent of Layer.backpropGradient().
|
Modifier and Type | Method and Description |
---|---|
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
InputPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
ComposableInputPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
BaseInputPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
FeedForwardToRnnPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
RnnToFeedForwardPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
CnnToFeedForwardPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
FeedForwardToCnnPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
RnnToCnnPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
CnnToRnnPreProcessor.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
ComputationGraph.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
GraphVertex.doBackward(boolean tbptt)
Do backward pass
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
GraphVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
ScaleVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
PreprocessorVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
PoolHelperVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
LayerVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
MergeVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
InputVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
L2NormalizeVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
SubsetVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
ShiftVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
ElementWiseVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
UnstackVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
StackVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
L2Vertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
ReshapeVertex.doBackward(boolean tbptt) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
ScaleVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
PreprocessorVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
PoolHelperVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
LayerVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
MergeVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
InputVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
L2NormalizeVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
SubsetVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
ShiftVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
ElementWiseVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
UnstackVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
StackVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
L2Vertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
ReshapeVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
DuplicateToTimeSeriesVertex.doBackward(boolean tbptt) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray[]> |
LastTimeStepVertex.doBackward(boolean tbptt) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
DuplicateToTimeSeriesVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
LastTimeStepVertex.feedForwardMaskArrays(org.nd4j.linalg.api.ndarray.INDArray[] maskArrays,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BasePretrainNetwork.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BaseOutputLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
FrozenLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ActivationLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
DropoutLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LossLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BaseLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
FrozenLayer.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
AbstractLayer.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<Gradient,Double> |
BaseOutputLayer.gradientAndScore() |
Pair<Gradient,Double> |
FrozenLayer.gradientAndScore() |
Pair<Gradient,Double> |
AbstractLayer.gradientAndScore() |
Pair<Gradient,Double> |
LossLayer.gradientAndScore() |
abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
BasePretrainNetwork.sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
Sample the hidden distribution given the visible
|
abstract Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
BasePretrainNetwork.sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
Sample the visible distribution given the hidden
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
Convolution1DLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ZeroPaddingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray weights,
org.nd4j.linalg.api.ndarray.INDArray delta,
int[] kernel,
int[] strides,
int[] pad,
org.nd4j.linalg.api.ndarray.INDArray biasGradView,
org.nd4j.linalg.api.ndarray.INDArray weightGradView,
org.nd4j.linalg.activations.IActivation afn,
ConvolutionLayer.AlgoMode mode,
ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo,
ConvolutionLayer.BwdDataAlgo bwdDataAlgo,
ConvolutionMode convolutionMode) |
protected Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionLayer.preOutput(boolean training,
boolean forBackprop)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
protected Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
ConvolutionLayer.preOutput4d(boolean training,
boolean forBackprop)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
|
protected Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
Convolution1DLayer.preOutput4d(boolean training,
boolean forBackprop) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
SubsamplingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
Subsampling1DLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
SubsamplingHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
int[] kernel,
int[] strides,
int[] pad,
PoolingType poolingType,
ConvolutionMode convolutionMode) |
Modifier and Type | Method and Description |
---|---|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
AutoEncoder.sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
AutoEncoder.sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
EmbeddingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RBM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>,Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> |
RBM.gibbhVh(org.nd4j.linalg.api.ndarray.INDArray h)
Gibbs sampling step: hidden ---> visible ---> hidden
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
RBM.sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
Binomial sampling of the hidden values given visible
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
RBM.sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
Guess the visible values given the hidden
|
Modifier and Type | Method and Description |
---|---|
Pair<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>,Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> |
RBM.gibbhVh(org.nd4j.linalg.api.ndarray.INDArray h)
Gibbs sampling step: hidden ---> visible ---> hidden
|
Pair<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>,Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> |
RBM.gibbhVh(org.nd4j.linalg.api.ndarray.INDArray h)
Gibbs sampling step: hidden ---> visible ---> hidden
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BatchNormalization.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LocalResponseNormalization.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LocalResponseNormalizationHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
double k,
double n,
double alpha,
double beta) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
BatchNormalizationHelper.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
int[] shape,
org.nd4j.linalg.api.ndarray.INDArray gamma,
org.nd4j.linalg.api.ndarray.INDArray dGammaView,
org.nd4j.linalg.api.ndarray.INDArray dBetaView,
double eps) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GlobalPoolingLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
GlobalPoolingLayer.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LSTM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
RnnOutputLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesBidirectionalLSTM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesLSTM.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LSTMHelper.backpropGradient(NeuralNetConfiguration conf,
org.nd4j.linalg.activations.IActivation gateActivationFn,
org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray recurrentWeights,
org.nd4j.linalg.api.ndarray.INDArray inputWeights,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
boolean truncatedBPTT,
int tbpttBackwardLength,
FwdPassReturn fwdPass,
boolean forwards,
String inputWeightKey,
String recurrentWeightKey,
String biasWeightKey,
Map<String,org.nd4j.linalg.api.ndarray.INDArray> gradientViews,
org.nd4j.linalg.api.ndarray.INDArray maskArray,
boolean hasPeepholeConnections) |
static Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LSTMHelpers.backpropGradientHelper(NeuralNetConfiguration conf,
org.nd4j.linalg.activations.IActivation gateActivationFn,
org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray recurrentWeights,
org.nd4j.linalg.api.ndarray.INDArray inputWeights,
org.nd4j.linalg.api.ndarray.INDArray epsilon,
boolean truncatedBPTT,
int tbpttBackwardLength,
FwdPassReturn fwdPass,
boolean forwards,
String inputWeightKey,
String recurrentWeightKey,
String biasWeightKey,
Map<String,org.nd4j.linalg.api.ndarray.INDArray> gradientViews,
org.nd4j.linalg.api.ndarray.INDArray maskArray,
boolean hasPeepholeConnections,
LSTMHelper helper) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
LSTM.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
RnnOutputLayer.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
GravesBidirectionalLSTM.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
GravesLSTM.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
LSTM.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackwardLength) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesBidirectionalLSTM.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackwardLength) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
GravesLSTM.tbpttBackpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
int tbpttBackwardLength) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
CenterLossOutputLayer.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<Gradient,Double> |
CenterLossOutputLayer.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
VariationalAutoencoder.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
VariationalAutoencoder.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<Gradient,Double> |
VariationalAutoencoder.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
MultiLayerNetwork.backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon) |
protected Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
MultiLayerNetwork.calcBackpropGradients(org.nd4j.linalg.api.ndarray.INDArray epsilon,
boolean withOutputLayer)
Calculate gradients and errors.
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
MultiLayerNetwork.feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize) |
Pair<Gradient,Double> |
MultiLayerNetwork.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
ConvexOptimizer.gradientAndScore()
The gradient and score for this optimizer
|
Modifier and Type | Method and Description |
---|---|
void |
ConvexOptimizer.setupSearchState(Pair<Gradient,Double> pair)
Based on the gradient and score
setup a search state
|
Modifier and Type | Method and Description |
---|---|
List<Pair<Integer,Double>> |
CollectScoresIterationListener.getScoreVsIter() |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
BaseOptimizer.gradientAndScore() |
Modifier and Type | Method and Description |
---|---|
void |
LBFGS.setupSearchState(Pair<Gradient,Double> pair) |
void |
BaseOptimizer.setupSearchState(Pair<Gradient,Double> pair)
Setup the initial search state
|
Modifier and Type | Method and Description |
---|---|
Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> |
Viterbi.decode(org.nd4j.linalg.api.ndarray.INDArray labels)
Decodes the given labels, assuming its a binary label matrix
|
Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> |
Viterbi.decode(org.nd4j.linalg.api.ndarray.INDArray labels,
boolean binaryLabelMatrix)
Decodes a series of labels
|
Pair<K,T> |
MultiDimensionalMap.Entry.getKey()
Returns the key corresponding to this entry.
|
Modifier and Type | Method and Description |
---|---|
Iterator<Pair<K,V>> |
MultiDimensionalSet.iterator()
Returns an iterator over the elements in this applyTransformToDestination.
|
Set<Pair<K,T>> |
MultiDimensionalMap.keySet()
Returns a
Set view of the keys contained in this map. |
Modifier and Type | Method and Description |
---|---|
boolean |
MultiDimensionalSet.add(Pair<K,V> kvPair)
Adds the specified element to this applyTransformToDestination if it is not already present
(optional operation).
|
V |
MultiDimensionalMap.put(Pair<K,T> key,
V value)
Associates the specified value with the specified key in this map
(optional operation).
|
Modifier and Type | Method and Description |
---|---|
boolean |
MultiDimensionalSet.addAll(Collection<? extends Pair<K,V>> c)
Adds all of the elements in the specified collection to this applyTransformToDestination if
they're not already present (optional operation).
|
void |
MultiDimensionalMap.putAll(Map<? extends Pair<K,T>,? extends V> m)
Copies all of the mappings from the specified map to this map
(optional operation).
|
static void |
InputSplit.splitInputs(org.nd4j.linalg.api.ndarray.INDArray inputs,
org.nd4j.linalg.api.ndarray.INDArray outcomes,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> train,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> test,
double split) |
static void |
InputSplit.splitInputs(org.nd4j.linalg.api.ndarray.INDArray inputs,
org.nd4j.linalg.api.ndarray.INDArray outcomes,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> train,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> test,
double split) |
static void |
InputSplit.splitInputs(List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> pairs,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> train,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> test,
double split) |
static void |
InputSplit.splitInputs(List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> pairs,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> train,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> test,
double split) |
static void |
InputSplit.splitInputs(List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> pairs,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> train,
List<Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray>> test,
double split) |
Constructor and Description |
---|
MultiDimensionalMap(Map<Pair<K,T>,V> backedMap) |
MultiDimensionalSet(Set<Pair<K,V>> backedSet) |
Copyright © 2017. All rights reserved.