public class Upsampling1D extends Upsampling2D
Layer.TrainingMode, Layer.Type
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
Upsampling1D(NeuralNetConfiguration conf,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
protected CNN2DFormat |
getFormat() |
protected int[] |
getSize() |
protected INDArray |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
clearNoiseWeightParams, fit, fit, getParam, gradient, isPretrainLayer, numParams, params, score, setParams, type, update
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, calcRegularizationScore, clear, close, computeGradientAndScore, conf, feedForwardMaskArray, getConfig, getEpochCount, getGradientsViewArray, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, input, layerConf, layerId, numParams, paramTable, paramTable, setBackpropGradientsViewArray, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, updaterDivideByMinibatch
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getIterationCount, setIterationCount
public Upsampling1D(NeuralNetConfiguration conf, DataType dataType)
protected CNN2DFormat getFormat()
getFormat
in class Upsampling2D
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class Upsampling2D
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerprotected int[] getSize()
getSize
in class Upsampling2D
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class Upsampling2D
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerprotected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
preOutput
in class Upsampling2D
Copyright © 2021. All rights reserved.