public interface ThresholdAlgorithm extends Serializable
Modifier and Type | Method and Description |
---|---|
double |
calculateThreshold(int iteration,
int epoch,
Double lastThreshold,
Boolean lastWasDense,
Double lastSparsityRatio,
INDArray updatesPlusResidual) |
ThresholdAlgorithm |
clone() |
ThresholdAlgorithmReducer |
newReducer()
Create a new ThresholdAlgorithmReducer.
|
double calculateThreshold(int iteration, int epoch, Double lastThreshold, Boolean lastWasDense, Double lastSparsityRatio, INDArray updatesPlusResidual)
iteration
- Current neural network training iterationepoch
- Current neural network training epochlastThreshold
- The encoding threshold used in the last iteration - if available. May be null for first
iteration in an epoch (where no 'last iteration' value is available)lastWasDense
- Whether the last encoding was dense (true) or sparse (false). May be null for the first
iteration in an epoch (where no 'last iteration' value is available)lastSparsityRatio
- The sparsity ratio of the last iteration. Sparsity ratio is defined as
numElements(encoded)/length(updates). A sparsity ratio of 1.0 would mean all entries
present in encoded representation; a sparsity ratio of 0.0 would mean the encoded vector
did not contain any values.
Note: when the last encoding was dense, lastSparsityRatio is always null - this means
that the sparsity ratio is larger than 1/16 = 0.0625updatesPlusResidual
- The actual array (updates plus residual) that will be encoded using the threshold
calculated/returned by this methodThresholdAlgorithmReducer newReducer()
ThresholdAlgorithm clone()
Copyright © 2021. All rights reserved.