public class GradientCheckUtil extends Object
Modifier and Type | Class and Description |
---|---|
static class |
GradientCheckUtil.GraphConfig |
static class |
GradientCheckUtil.MLNConfig |
static class |
GradientCheckUtil.PrintMode |
Modifier and Type | Method and Description |
---|---|
static boolean |
checkGradients(GradientCheckUtil.GraphConfig c) |
static boolean |
checkGradients(GradientCheckUtil.MLNConfig c) |
static boolean |
checkGradients(MultiLayerNetwork mln,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray input,
INDArray labels)
Deprecated.
|
static boolean |
checkGradients(MultiLayerNetwork mln,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray input,
INDArray labels,
INDArray inputMask,
INDArray labelMask,
boolean subset,
int maxPerParam,
Set<String> excludeParams,
Integer rngSeedResetEachIter)
Deprecated.
|
static boolean |
checkGradientsPretrainLayer(Layer layer,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray input,
int rngSeed)
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
|
@Deprecated public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels)
mln
- MultiLayerNetwork to test. This must be initialized.epsilon
- Usually on the order/ of 1e-4 or so.maxRelError
- Maximum relative error. Usually < 1e-5 or so, though maybe more for deep networks or those with nonlinear activationminAbsoluteError
- Minimum absolute error to cause a failure. Numerical gradients can be non-zero due to precision issues.
For example, 0.0 vs. 1e-18: relative error is 1.0, but not really a failureprint
- Whether to print full pass/failure details for each parameter gradientexitOnFirstError
- If true: return upon first failure. If false: continue checking even if
one parameter gradient has failed. Typically use false for debugging, true for unit tests.input
- Input array to use for forward pass. May be mini-batch data.labels
- Labels/targets to use to calculate backprop gradient. May be mini-batch data.@Deprecated public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels, INDArray inputMask, INDArray labelMask, boolean subset, int maxPerParam, Set<String> excludeParams, Integer rngSeedResetEachIter)
public static boolean checkGradients(GradientCheckUtil.MLNConfig c)
public static boolean checkGradients(GradientCheckUtil.GraphConfig c)
public static boolean checkGradientsPretrainLayer(Layer layer, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, int rngSeed)
Copyright © 2021. All rights reserved.