Modifier and Type | Field and Description |
---|---|
protected NeuralNetConfiguration.Builder |
ComputationGraphConfiguration.GraphBuilder.globalConfiguration |
Modifier and Type | Method and Description |
---|---|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.activation(Activation activation)
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.activation(IActivation activationFunction)
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.biasInit(double biasInit)
Constant for bias initialization.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.biasUpdater(IUpdater updater)
Gradient updater configuration, for the biases only.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.cacheMode(@NonNull CacheMode cacheMode)
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.clone() |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainAllParameters(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainBias(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainWeights(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.convolutionMode(ConvolutionMode convolutionMode)
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dataType(@NonNull DataType dataType)
Set the DataType for the network parameters and activations.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dist(Distribution dist)
Deprecated.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dropOut(double inputRetainProbability)
Dropout probability.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dropOut(IDropout dropout)
Set the dropout for all layers in this network
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.gradientNormalization(GradientNormalization gradientNormalization)
Gradient normalization strategy.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.gradientNormalizationThreshold(double threshold)
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise. L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping. Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.inferenceWorkspaceMode(@NonNull WorkspaceMode workspaceMode)
This method defines Workspace mode being used during inference:
NONE: workspace won't be used ENABLED: workspaces will be used for inference (reduced memory and better performance) |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l1(double l1)
L1 regularization coefficient for the weights (excluding biases).
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l1Bias(double l1Bias)
L1 regularization coefficient for the bias.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l2(double l2)
L2 regularization coefficient for the weights (excluding biases).
Note: Generally, WeightDecay (set via weightDecay(double) should be preferred to
L2 regularization. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l2Bias(double l2Bias)
L2 regularization coefficient for the bias.
Note: Generally, WeightDecay (set via weightDecayBias(double,boolean) should be preferred to
L2 regularization. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.layer(Layer layer)
Layer class.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.maxNumLineSearchIterations(int maxNumLineSearchIterations)
Maximum number of line search iterations.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.miniBatch(boolean miniBatch)
Process input as minibatch vs full dataset.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.minimize(boolean minimize)
Objective function to minimize or maximize cost function
Default set to minimize true.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.optimizationAlgo(OptimizationAlgorithm optimizationAlgo)
Optimization algorithm to use.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.regularization(List<Regularization> regularization)
Set the regularization for the parameters (excluding biases) - for example
WeightDecay Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.regularizationBias(List<Regularization> regularizationBias)
Set the regularization for the biases only - for example
WeightDecay Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.seed(long seed)
Random number generator seed.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.stepFunction(StepFunction stepFunction)
Deprecated.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.trainingWorkspaceMode(@NonNull WorkspaceMode workspaceMode)
This method defines Workspace mode being used during training:
NONE: workspace won't be used ENABLED: workspaces will be used for training (reduced memory and better performance) |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.updater(IUpdater updater)
Gradient updater configuration.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.updater(Updater updater)
Deprecated.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightDecay(double coefficient)
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay with multiplying the learning rate - see WeightDecay for more details.Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightDecay(double coefficient,
boolean applyLR)
Add weight decay regularization for the network parameters (excluding biases).
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightDecayBias(double coefficient)
Weight decay for the biases only - see
weightDecay(double) for more details. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightDecayBias(double coefficient,
boolean applyLR)
Weight decay for the biases only - see
weightDecay(double) for more detailsNote: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightInit(IWeightInit weightInit)
Weight initialization scheme to use, for initial weight values
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightInit(WeightInit weightInit)
Weight initialization scheme to use, for initial weight values
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightNoise(IWeightNoise weightNoise)
Set the weight noise (such as
DropConnect and
WeightNoise ) for the layers in this network.Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
Modifier and Type | Method and Description |
---|---|
Map<Integer,NeuralNetConfiguration.Builder> |
NeuralNetConfiguration.ListBuilder.getLayerwise() |
Constructor and Description |
---|
GraphBuilder(ComputationGraphConfiguration newConf,
NeuralNetConfiguration.Builder globalConfiguration) |
GraphBuilder(NeuralNetConfiguration.Builder globalConfiguration) |
ListBuilder(NeuralNetConfiguration.Builder globalConfig) |
ListBuilder(NeuralNetConfiguration.Builder globalConfig,
Map<Integer,NeuralNetConfiguration.Builder> layerMap) |
Constructor and Description |
---|
ListBuilder(NeuralNetConfiguration.Builder globalConfig,
Map<Integer,NeuralNetConfiguration.Builder> layerMap) |
Modifier and Type | Method and Description |
---|---|
void |
LocallyConnected1D.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
void |
LocallyConnected2D.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
void |
RecurrentAttentionLayer.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
Modifier and Type | Method and Description |
---|---|
void |
AbstractSameDiffLayer.applyGlobalConfig(NeuralNetConfiguration.Builder b) |
void |
SameDiffVertex.applyGlobalConfig(NeuralNetConfiguration.Builder b) |
void |
AbstractSameDiffLayer.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
void |
SameDiffVertex.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
Modifier and Type | Method and Description |
---|---|
NeuralNetConfiguration.Builder |
FineTuneConfiguration.appliedNeuralNetConfigurationBuilder() |
Copyright © 2021. All rights reserved.