public abstract static class ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> extends FeedForwardLayer.Builder<T>
Modifier and Type | Field and Description |
---|---|
protected int |
convolutionDim |
protected ConvolutionMode |
convolutionMode
Set the convolution mode for the Convolution layer.
|
protected ConvolutionLayer.AlgoMode |
cudnnAlgoMode
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
|
protected boolean |
cudnnAllowFallback
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
|
protected ConvolutionLayer.BwdDataAlgo |
cudnnBwdDataAlgo |
protected ConvolutionLayer.BwdFilterAlgo |
cudnnBwdFilterAlgo |
protected ConvolutionLayer.FwdAlgo |
cudnnFwdAlgo |
protected int[] |
dilation
Kernel dilation.
|
protected boolean |
hasBias
If true (default): include bias parameters in the model.
|
int[] |
kernelSize |
protected int[] |
padding |
protected int[] |
stride |
nIn, nOut
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iupdater, regularization, regularizationBias, weightInitFn, weightNoise
allParamConstraints, biasConstraints, iDropout, layerName, weightConstraints
Modifier | Constructor and Description |
---|---|
protected |
BaseConvBuilder() |
protected |
BaseConvBuilder(int... kernelSize) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int dim) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int dim) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation) |
protected |
BaseConvBuilder(int[] kernelSize,
int[] stride,
int[] padding,
int[] dilation,
int dim) |
protected |
BaseConvBuilder(int dim,
int... kernelSize) |
Modifier and Type | Method and Description |
---|---|
protected abstract boolean |
allowCausal() |
T |
convolutionMode(ConvolutionMode convolutionMode)
Set the convolution mode for the Convolution layer.
|
T |
cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
|
T |
cudnnAllowFallback(boolean allowFallback)
Deprecated.
|
T |
cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo) |
T |
cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo) |
T |
cudnnFwdMode(ConvolutionLayer.FwdAlgo cudnnFwdAlgo) |
T |
dilation(int... dilation)
Kernel dilation.
|
T |
hasBias(boolean hasBias)
If true (default): include bias parameters in the model.
|
T |
helperAllowFallback(boolean allowFallback)
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
|
T |
kernelSize(int... kernelSize) |
T |
padding(int... padding) |
protected void |
setConvolutionMode(ConvolutionMode convolutionMode) |
T |
stride(int... stride) |
nIn, nIn, nOut, nOut, units
activation, activation, biasInit, biasUpdater, dist, gainInit, gradientNormalization, gradientNormalizationThreshold, l1, l1Bias, l2, l2Bias, regularization, regularizationBias, updater, updater, weightDecay, weightDecay, weightDecayBias, weightDecayBias, weightInit, weightInit, weightInit, weightNoise
build, constrainAllParameters, constrainBias, constrainWeights, dropOut, dropOut, name
protected int convolutionDim
protected boolean hasBias
protected ConvolutionMode convolutionMode
ConvolutionMode
for more detailsprotected int[] dilation
For more details, see:
Yu and Koltun (2014) and
Chen et al. (2014), as well as
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
public int[] kernelSize
protected int[] stride
protected int[] padding
protected ConvolutionLayer.AlgoMode cudnnAlgoMode
protected ConvolutionLayer.FwdAlgo cudnnFwdAlgo
protected ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo
protected ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo
protected boolean cudnnAllowFallback
protected BaseConvBuilder(int[] kernelSize, int[] stride, int[] padding, int[] dilation, int dim)
protected BaseConvBuilder(int[] kernelSize, int[] stride, int[] padding, int[] dilation)
protected BaseConvBuilder(int[] kernelSize, int[] stride, int[] padding, int dim)
protected BaseConvBuilder(int[] kernelSize, int[] stride, int[] padding)
protected BaseConvBuilder(int[] kernelSize, int[] stride, int dim)
protected BaseConvBuilder(int[] kernelSize, int[] stride)
protected BaseConvBuilder(int dim, int... kernelSize)
protected BaseConvBuilder(int... kernelSize)
protected BaseConvBuilder()
protected abstract boolean allowCausal()
protected void setConvolutionMode(ConvolutionMode convolutionMode)
public T hasBias(boolean hasBias)
hasBias
- If true: include bias parameters in this modelpublic T convolutionMode(ConvolutionMode convolutionMode)
ConvolutionMode
for more detailsconvolutionMode
- Convolution mode for layerpublic T dilation(int... dilation)
For more details, see:
Yu and Koltun (2014) and
Chen et al. (2014), as well as
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
dilation
- Dilation for kernelpublic T kernelSize(int... kernelSize)
public T stride(int... stride)
public T padding(int... padding)
public T cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
public T cudnnFwdMode(ConvolutionLayer.FwdAlgo cudnnFwdAlgo)
public T cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo)
public T cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo)
@Deprecated public T cudnnAllowFallback(boolean allowFallback)
helperAllowFallback(boolean)
allowFallback
- Whether fallback to non-CuDNN implementation should be usedpublic T helperAllowFallback(boolean allowFallback)
allowFallback
- Whether fallback to non-CuDNN implementation should be usedCopyright © 2021. All rights reserved.