public class ConvolutionLayer extends BaseLayer<ConvolutionLayer>
Layer.TrainingMode, Layer.Type
Modifier and Type | Field and Description |
---|---|
protected ConvolutionMode |
convolutionMode |
static String |
CUDA_CNN_HELPER_CLASS_NAME |
protected INDArray |
dummyBias |
protected INDArray |
dummyBiasGrad |
protected ConvolutionHelper |
helper |
protected int |
helperCountFail |
protected INDArray |
i2d |
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
ConvolutionLayer(NeuralNetConfiguration conf,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
Pair<INDArray,MaskState> |
feedForwardMaskArray(INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in the layer as appropriate.
|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
LayerHelper |
getHelper() |
boolean |
hasBias()
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
protected Pair<INDArray,INDArray> |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
protected Pair<INDArray,INDArray> |
preOutput4d(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
|
void |
setParams(INDArray params)
Set the parameters for this model.
|
Layer.Type |
type()
Returns the layer type
|
protected void |
validateInputDepth(long inDepth) |
protected void |
validateInputRank() |
calcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, getConfig, getEpochCount, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, updaterDivideByMinibatch
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getIterationCount, setIterationCount
protected INDArray i2d
protected ConvolutionHelper helper
protected int helperCountFail
protected ConvolutionMode convolutionMode
protected transient INDArray dummyBias
protected transient INDArray dummyBiasGrad
public static final String CUDA_CNN_HELPER_CLASS_NAME
public ConvolutionLayer(NeuralNetConfiguration conf, DataType dataType)
public Layer.Type type()
Layer
type
in interface Layer
type
in class AbstractLayer<ConvolutionLayer>
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseLayer<ConvolutionLayer>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerprotected Pair<INDArray,INDArray> preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected void validateInputRank()
protected void validateInputDepth(long inDepth)
protected Pair<INDArray,INDArray> preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
training
- Train or test time (impacts dropout)forBackprop
- If true: return the im2col2d array for re-use during backprop. False: return null for second
pair entry. Note that it may still be null in the case of CuDNN and the like.public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class BaseLayer<ConvolutionLayer>
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerpublic boolean hasBias()
BaseLayer
hasBias
in class BaseLayer<ConvolutionLayer>
public boolean isPretrainLayer()
Layer
public LayerHelper getHelper()
getHelper
in interface Layer
getHelper
in class AbstractLayer<ConvolutionLayer>
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Model
fit
in interface Model
fit
in class BaseLayer<ConvolutionLayer>
input
- the data to fit the model topublic void setParams(INDArray params)
Model
setParams
in interface Model
setParams
in class BaseLayer<ConvolutionLayer>
params
- the parameters for the modelpublic Pair<INDArray,MaskState> feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize)
Layer
feedForwardMaskArray
in interface Layer
feedForwardMaskArray
in class AbstractLayer<ConvolutionLayer>
maskArray
- Mask array to setcurrentMaskState
- Current state of the mask - see MaskState
minibatchSize
- Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)Copyright © 2021. All rights reserved.