public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Type
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
DenseLayer(NeuralNetConfiguration conf,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
boolean |
hasBias()
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
|
boolean |
hasLayerNorm()
Does this layer support and is it enabled layer normalization? Only Dense and SimpleRNN Layers support
layer normalization.
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
activate, backpropGradient, calcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, updaterDivideByMinibatch
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getIterationCount, setIterationCount
public DenseLayer(NeuralNetConfiguration conf, DataType dataType)
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Model
fit
in interface Model
fit
in class BaseLayer<DenseLayer>
input
- the data to fit the model topublic boolean isPretrainLayer()
Layer
public boolean hasBias()
BaseLayer
hasBias
in class BaseLayer<DenseLayer>
public boolean hasLayerNorm()
BaseLayer
hasLayerNorm
in class BaseLayer<DenseLayer>
Copyright © 2021. All rights reserved.