public class LocalResponseNormalization extends AbstractLayer<LocalResponseNormalization>
Layer.TrainingMode, Layer.Type
Modifier and Type | Field and Description |
---|---|
protected LocalResponseNormalizationHelper |
helper |
protected int |
helperCountFail |
static String |
LOCAL_RESPONSE_NORM_CUDNN_HELPER_CLASS_NAME |
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
LocalResponseNormalization(NeuralNetConfiguration conf,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
calcRegularizationScore(boolean backpropParamsOnly)
Calculate the regularization component of the score, for the parameters in this layer
For example, the L1, L2 and/or weight decay components of the loss function |
void |
clearNoiseWeightParams() |
Layer |
clone() |
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
LayerHelper |
getHelper() |
INDArray |
getParam(String param)
Get the parameter
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
void |
setParams(INDArray params)
Set the parameters for this model.
|
Layer.Type |
type()
Returns the layer type
|
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, clear, close, computeGradientAndScore, conf, feedForwardMaskArray, fit, getConfig, getEpochCount, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradient, gradientAndScore, init, input, layerConf, layerId, numParams, numParams, paramTable, paramTable, score, setBackpropGradientsViewArray, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, update, updaterDivideByMinibatch
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getIterationCount, setIterationCount
protected LocalResponseNormalizationHelper helper
protected int helperCountFail
public static final String LOCAL_RESPONSE_NORM_CUDNN_HELPER_CLASS_NAME
public LocalResponseNormalization(NeuralNetConfiguration conf, DataType dataType)
public double calcRegularizationScore(boolean backpropParamsOnly)
Layer
calcRegularizationScore
in interface Layer
calcRegularizationScore
in class AbstractLayer<LocalResponseNormalization>
backpropParamsOnly
- If true: calculate regularization score based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public Layer.Type type()
Layer
type
in interface Layer
type
in class AbstractLayer<LocalResponseNormalization>
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Model
fit
in interface Model
fit
in class AbstractLayer<LocalResponseNormalization>
input
- the data to fit the model topublic Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerpublic INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerpublic boolean isPretrainLayer()
Layer
public void clearNoiseWeightParams()
public LayerHelper getHelper()
getHelper
in interface Layer
getHelper
in class AbstractLayer<LocalResponseNormalization>
public INDArray params()
AbstractLayer
params
in interface Model
params
in interface Trainable
params
in class AbstractLayer<LocalResponseNormalization>
public INDArray getParam(String param)
Model
getParam
in interface Model
getParam
in class AbstractLayer<LocalResponseNormalization>
param
- the key of the parameterpublic void setParams(INDArray params)
Model
setParams
in interface Model
setParams
in class AbstractLayer<LocalResponseNormalization>
params
- the parameters for the modelCopyright © 2021. All rights reserved.