Package | Description |
---|---|
org.deeplearning4j.nn.transferlearning |
Modifier and Type | Method and Description |
---|---|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.activation(Activation activation)
Activation function / neuron non-linearity
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.activation(IActivation activationFn)
Activation function / neuron non-linearity
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.backprop(boolean backprop) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.backpropType(BackpropType backpropType)
The type of backprop.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.biasInit(double biasInit)
Constant for bias initialization.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.biasUpdater(IUpdater biasUpdater)
Gradient updater configuration, for the biases only.
|
static FineTuneConfiguration.Builder |
FineTuneConfiguration.builder() |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.constraints(List<LayerConstraint> constraints)
Set constraints to be applied to all layers.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.convolutionMode(ConvolutionMode convolutionMode)
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.dist(Distribution dist)
Deprecated.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.dropOut(double inputRetainProbability)
Dropout probability.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.dropout(IDropout dropout)
Set the dropout
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.gradientNormalization(GradientNormalization gradientNormalization)
Gradient normalization strategy.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.gradientNormalizationThreshold(double gradientNormalizationThreshold)
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise. L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.inferenceWorkspaceMode(WorkspaceMode inferenceWorkspaceMode)
This method defines Workspace mode being used during inference:
NONE: workspace won't be used ENABLED: workspaces will be used for inference (reduced memory and better performance) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.l1(double l1)
L1 regularization coefficient for the weights (excluding biases)
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.l1Bias(double l1Bias)
L1 regularization coefficient for the bias parameters
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.l2(double l2)
L2 regularization coefficient for the weights (excluding biases)
Note: Generally, WeightDecay (set via weightDecay(double,boolean) should be preferred to
L2 regularization. |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.l2Bias(double l2Bias)
L2 regularization coefficient for the bias parameters
Note: Generally, WeightDecay (set via weightDecayBias(double,boolean) should be preferred to
L2 regularization. |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.maxNumLineSearchIterations(int maxNumLineSearchIterations) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.miniBatch(boolean miniBatch)
Whether scores and gradients should be divided by the minibatch size.
Most users should leave this ast he default value of true. |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.minimize(boolean minimize) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.optimizationAlgo(OptimizationAlgorithm optimizationAlgo) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.pretrain(boolean pretrain) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.seed(int seed)
RNG seed for reproducibility
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.seed(long seed)
RNG seed for reproducibility
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.stepFunction(StepFunction stepFunction) |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.tbpttBackLength(int tbpttBackLength)
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.tbpttFwdLength(int tbpttFwdLength)
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller) Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.trainingWorkspaceMode(WorkspaceMode trainingWorkspaceMode)
This method defines Workspace mode being used during training:
NONE: workspace won't be used
ENABLED: workspaces will be used for training (reduced memory and better performance)
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.updater(IUpdater updater)
Gradient updater configuration.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.updater(Updater updater)
Deprecated.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightDecay(double coefficient)
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay with multiplying the learning rate - see WeightDecay for more details. |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightDecay(double coefficient,
boolean applyLR)
Add weight decay regularization for the network parameters (excluding biases).
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightDecayBias(double coefficient)
Weight decay for the biases only - see
weightDecay(double) for more details. |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightDecayBias(double coefficient,
boolean applyLR)
Weight decay for the biases only - see
weightDecay(double) for more details |
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution.
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightInit(IWeightInit weightInit)
Weight initialization scheme to use, for initial weight values
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightInit(WeightInit weightInit)
Weight initialization scheme to use, for initial weight values
|
FineTuneConfiguration.Builder |
FineTuneConfiguration.Builder.weightNoise(IWeightNoise weightNoise)
Set the weight noise (such as
DropConnect and
WeightNoise ) |
Copyright © 2021. All rights reserved.