Uses of Interface
org.deeplearning4j.nn.api.Layer
-
-
Uses of Layer in org.deeplearning4j.gradientcheck
Methods in org.deeplearning4j.gradientcheck with parameters of type Layer Modifier and Type Method Description static booleanGradientCheckUtil. checkGradientsPretrainLayer(Layer layer, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, int rngSeed)Check backprop gradients for a pretrain layer NOTE: gradient checking pretrain layers can be difficult... -
Uses of Layer in org.deeplearning4j.nn.api.layers
Subinterfaces of Layer in org.deeplearning4j.nn.api.layers Modifier and Type Interface Description interfaceIOutputLayerinterfaceRecurrentLayerMethods in org.deeplearning4j.nn.api.layers with parameters of type Layer Modifier and Type Method Description voidLayerConstraint. applyConstraint(Layer layer, int iteration, int epoch)Apply a given constraint to a layer at each iteration in the provided epoch, after parameters have been updated. -
Uses of Layer in org.deeplearning4j.nn.conf.constraint
Methods in org.deeplearning4j.nn.conf.constraint with parameters of type Layer Modifier and Type Method Description voidBaseConstraint. applyConstraint(Layer layer, int iteration, int epoch) -
Uses of Layer in org.deeplearning4j.nn.conf.layers
Methods in org.deeplearning4j.nn.conf.layers that return Layer Modifier and Type Method Description LayerActivationLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerAutoEncoder. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerBatchNormalization. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerCenterLossOutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerCnn3DLossLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerCnnLossLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerConvolution1DLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerConvolution3D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerConvolutionLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerDeconvolution2D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerDeconvolution3D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerDenseLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerDepthwiseConvolution2D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerDropoutLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerEmbeddingLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerEmbeddingSequenceLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerGlobalPoolingLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerGravesBidirectionalLSTM. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)Deprecated.LayerGravesLSTM. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)Deprecated.abstract LayerLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerLocalResponseNormalization. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerLossLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerLSTM. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerOutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerPReLULayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerRnnLossLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerRnnOutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSeparableConvolution2D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSpaceToBatchLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSpaceToDepthLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSubsampling1DLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSubsampling3DLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSubsamplingLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerUpsampling1D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerUpsampling2D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerUpsampling3D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerZeroPadding1DLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerZeroPadding3DLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerZeroPaddingLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.convolutional
Methods in org.deeplearning4j.nn.conf.layers.convolutional that return Layer Modifier and Type Method Description LayerCropping1D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerCropping2D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerCropping3D. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.misc
Methods in org.deeplearning4j.nn.conf.layers.misc that return Layer Modifier and Type Method Description LayerElementWiseMultiplicationLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerFrozenLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerFrozenLayerWithBackprop. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerRepeatVector. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.objdetect
Methods in org.deeplearning4j.nn.conf.layers.objdetect that return Layer Modifier and Type Method Description LayerYolo2OutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.recurrent
Methods in org.deeplearning4j.nn.conf.layers.recurrent that return Layer Modifier and Type Method Description LayerBidirectional. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerLastTimeStep. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSimpleRnn. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerTimeDistributed. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.samediff
Methods in org.deeplearning4j.nn.conf.layers.samediff that return Layer Modifier and Type Method Description abstract LayerAbstractSameDiffLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSameDiffLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerSameDiffOutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.util
Methods in org.deeplearning4j.nn.conf.layers.util that return Layer Modifier and Type Method Description LayerMaskLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)LayerMaskZeroLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.variational
Methods in org.deeplearning4j.nn.conf.layers.variational that return Layer Modifier and Type Method Description LayerVariationalAutoencoder. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.ocnn
Methods in org.deeplearning4j.nn.conf.ocnn that return Layer Modifier and Type Method Description LayerOCNNOutputLayer. instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) -
Uses of Layer in org.deeplearning4j.nn.conf.weightnoise
Methods in org.deeplearning4j.nn.conf.weightnoise with parameters of type Layer Modifier and Type Method Description INDArrayDropConnect. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)INDArrayIWeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)Get the parameter, after applying weight noiseINDArrayWeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr) -
Uses of Layer in org.deeplearning4j.nn.graph
Fields in org.deeplearning4j.nn.graph declared as Layer Modifier and Type Field Description protected Layer[]ComputationGraph. layersA list of layers.Methods in org.deeplearning4j.nn.graph that return Layer Modifier and Type Method Description LayerComputationGraph. getLayer(int idx)Get the layer by the number of that layer, in range 0 to getNumLayers()-1 NOTE: This is different from the internal GraphVertex index for the layerLayerComputationGraph. getLayer(String name)Get a given layer by name.Layer[]ComputationGraph. getLayers()Get all layers in the ComputationGraphLayerComputationGraph. getOutputLayer(int outputLayerIdx)Get the specified output layer, by index. -
Uses of Layer in org.deeplearning4j.nn.graph.vertex
Methods in org.deeplearning4j.nn.graph.vertex that return Layer Modifier and Type Method Description LayerBaseWrapperVertex. getLayer()LayerGraphVertex. getLayer()Get the Layer (if any). -
Uses of Layer in org.deeplearning4j.nn.graph.vertex.impl
Methods in org.deeplearning4j.nn.graph.vertex.impl that return Layer Modifier and Type Method Description LayerElementWiseVertex. getLayer()LayerInputVertex. getLayer()LayerL2NormalizeVertex. getLayer()LayerL2Vertex. getLayer()LayerLayerVertex. getLayer()LayerMergeVertex. getLayer()LayerPoolHelperVertex. getLayer()LayerPreprocessorVertex. getLayer()LayerReshapeVertex. getLayer()LayerScaleVertex. getLayer()LayerShiftVertex. getLayer()LayerStackVertex. getLayer()LayerSubsetVertex. getLayer()LayerUnstackVertex. getLayer()Constructors in org.deeplearning4j.nn.graph.vertex.impl with parameters of type Layer Constructor Description LayerVertex(ComputationGraph graph, String name, int vertexIndex, Layer layer, InputPreProcessor layerPreProcessor, boolean outputVertex, DataType dataType)Create a network input vertex:LayerVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices, VertexIndices[] outputVertices, Layer layer, InputPreProcessor layerPreProcessor, boolean outputVertex, DataType dataType) -
Uses of Layer in org.deeplearning4j.nn.graph.vertex.impl.rnn
Methods in org.deeplearning4j.nn.graph.vertex.impl.rnn that return Layer Modifier and Type Method Description LayerDuplicateToTimeSeriesVertex. getLayer()LayerLastTimeStepVertex. getLayer()LayerReverseTimeSeriesVertex. getLayer() -
Uses of Layer in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers that implement Layer Modifier and Type Class Description classAbstractLayer<LayerConfT extends Layer>A layer with input and output, no parameters or gradientsclassActivationLayerclassBaseLayer<LayerConfT extends BaseLayer>A layer with parametersclassBaseOutputLayer<LayerConfT extends BaseOutputLayer>classBasePretrainNetwork<LayerConfT extends BasePretrainNetwork>classDropoutLayerclassFrozenLayerclassFrozenLayerWithBackpropFrozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.classLossLayerclassOutputLayerclassRepeatVectorMethods in org.deeplearning4j.nn.layers that return Layer Modifier and Type Method Description LayerBaseLayer. clone()LayerFrozenLayer. getInsideLayer()LayerFrozenLayerWithBackprop. getInsideLayer()Constructors in org.deeplearning4j.nn.layers with parameters of type Layer Constructor Description FrozenLayer(Layer insideLayer)FrozenLayerWithBackprop(Layer insideLayer) -
Uses of Layer in org.deeplearning4j.nn.layers.convolution
Classes in org.deeplearning4j.nn.layers.convolution that implement Layer Modifier and Type Class Description classCnn3DLossLayerclassCnnLossLayerclassConvolution1DLayerclassConvolution3DLayerclassConvolutionLayerclassCropping1DLayerclassCropping2DLayerclassCropping3DLayerclassDeconvolution2DLayerclassDeconvolution3DLayerclassDepthwiseConvolution2DLayerclassSeparableConvolution2DLayerclassSpaceToBatchclassSpaceToDepthclassZeroPadding1DLayerclassZeroPadding3DLayerclassZeroPaddingLayerMethods in org.deeplearning4j.nn.layers.convolution that return Layer Modifier and Type Method Description LayerCropping1DLayer. clone()LayerCropping2DLayer. clone()LayerCropping3DLayer. clone()LayerZeroPadding1DLayer. clone()LayerZeroPadding3DLayer. clone()LayerZeroPaddingLayer. clone() -
Uses of Layer in org.deeplearning4j.nn.layers.convolution.subsampling
Classes in org.deeplearning4j.nn.layers.convolution.subsampling that implement Layer Modifier and Type Class Description classSubsampling1DLayerclassSubsampling3DLayerclassSubsamplingLayer -
Uses of Layer in org.deeplearning4j.nn.layers.convolution.upsampling
Classes in org.deeplearning4j.nn.layers.convolution.upsampling that implement Layer Modifier and Type Class Description classUpsampling1DclassUpsampling2DclassUpsampling3D -
Uses of Layer in org.deeplearning4j.nn.layers.feedforward
Classes in org.deeplearning4j.nn.layers.feedforward that implement Layer Modifier and Type Class Description classPReLU -
Uses of Layer in org.deeplearning4j.nn.layers.feedforward.autoencoder
Classes in org.deeplearning4j.nn.layers.feedforward.autoencoder that implement Layer Modifier and Type Class Description classAutoEncoder -
Uses of Layer in org.deeplearning4j.nn.layers.feedforward.dense
Classes in org.deeplearning4j.nn.layers.feedforward.dense that implement Layer Modifier and Type Class Description classDenseLayer -
Uses of Layer in org.deeplearning4j.nn.layers.feedforward.elementwise
Classes in org.deeplearning4j.nn.layers.feedforward.elementwise that implement Layer Modifier and Type Class Description classElementWiseMultiplicationLayer -
Uses of Layer in org.deeplearning4j.nn.layers.feedforward.embedding
Classes in org.deeplearning4j.nn.layers.feedforward.embedding that implement Layer Modifier and Type Class Description classEmbeddingLayerclassEmbeddingSequenceLayer -
Uses of Layer in org.deeplearning4j.nn.layers.normalization
Classes in org.deeplearning4j.nn.layers.normalization that implement Layer Modifier and Type Class Description classBatchNormalizationclassLocalResponseNormalizationMethods in org.deeplearning4j.nn.layers.normalization that return Layer Modifier and Type Method Description LayerLocalResponseNormalization. clone() -
Uses of Layer in org.deeplearning4j.nn.layers.objdetect
Classes in org.deeplearning4j.nn.layers.objdetect that implement Layer Modifier and Type Class Description classYolo2OutputLayerMethods in org.deeplearning4j.nn.layers.objdetect that return Layer Modifier and Type Method Description LayerYolo2OutputLayer. clone() -
Uses of Layer in org.deeplearning4j.nn.layers.ocnn
Classes in org.deeplearning4j.nn.layers.ocnn that implement Layer Modifier and Type Class Description classOCNNOutputLayer -
Uses of Layer in org.deeplearning4j.nn.layers.pooling
Classes in org.deeplearning4j.nn.layers.pooling that implement Layer Modifier and Type Class Description classGlobalPoolingLayerMethods in org.deeplearning4j.nn.layers.pooling that return Layer Modifier and Type Method Description LayerGlobalPoolingLayer. clone() -
Uses of Layer in org.deeplearning4j.nn.layers.recurrent
Classes in org.deeplearning4j.nn.layers.recurrent that implement Layer Modifier and Type Class Description classBaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer>classBidirectionalLayerclassGravesBidirectionalLSTMclassGravesLSTMDeprecated.classLastTimeStepLayerclassLSTMclassMaskZeroLayerclassRnnLossLayerclassRnnOutputLayerclassSimpleRnnclassTimeDistributedLayerMethods in org.deeplearning4j.nn.layers.recurrent with parameters of type Layer Modifier and Type Method Description FwdPassReturnLSTMHelper. activate(Layer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray biases, boolean training, INDArray prevOutputActivations, INDArray prevMemCellState, boolean forBackprop, boolean forwards, String inputWeightKey, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)Constructors in org.deeplearning4j.nn.layers.recurrent with parameters of type Layer Constructor Description BidirectionalLayer(@NonNull NeuralNetConfiguration conf, @NonNull Layer fwd, @NonNull Layer bwd, @NonNull INDArray paramsView)LastTimeStepLayer(@NonNull Layer underlying)MaskZeroLayer(@NonNull Layer underlying, double maskingValue)TimeDistributedLayer(Layer underlying, RNNFormat rnnDataFormat) -
Uses of Layer in org.deeplearning4j.nn.layers.samediff
Classes in org.deeplearning4j.nn.layers.samediff that implement Layer Modifier and Type Class Description classSameDiffLayerclassSameDiffOutputLayerMethods in org.deeplearning4j.nn.layers.samediff that return Layer Modifier and Type Method Description LayerSameDiffLayer. clone()LayerSameDiffOutputLayer. clone()LayerSameDiffGraphVertex. getLayer() -
Uses of Layer in org.deeplearning4j.nn.layers.training
Classes in org.deeplearning4j.nn.layers.training that implement Layer Modifier and Type Class Description classCenterLossOutputLayer -
Uses of Layer in org.deeplearning4j.nn.layers.util
Classes in org.deeplearning4j.nn.layers.util that implement Layer Modifier and Type Class Description classMaskLayerMethods in org.deeplearning4j.nn.layers.util that return Layer Modifier and Type Method Description LayerMaskLayer. clone() -
Uses of Layer in org.deeplearning4j.nn.layers.variational
Classes in org.deeplearning4j.nn.layers.variational that implement Layer Modifier and Type Class Description classVariationalAutoencoder -
Uses of Layer in org.deeplearning4j.nn.layers.wrapper
Classes in org.deeplearning4j.nn.layers.wrapper that implement Layer Modifier and Type Class Description classBaseWrapperLayerFields in org.deeplearning4j.nn.layers.wrapper declared as Layer Modifier and Type Field Description protected LayerBaseWrapperLayer. underlyingConstructors in org.deeplearning4j.nn.layers.wrapper with parameters of type Layer Constructor Description BaseWrapperLayer(@NonNull Layer underlying) -
Uses of Layer in org.deeplearning4j.nn.multilayer
Classes in org.deeplearning4j.nn.multilayer that implement Layer Modifier and Type Class Description classMultiLayerNetworkFields in org.deeplearning4j.nn.multilayer declared as Layer Modifier and Type Field Description protected Layer[]MultiLayerNetwork. layersFields in org.deeplearning4j.nn.multilayer with type parameters of type Layer Modifier and Type Field Description protected LinkedHashMap<String,Layer>MultiLayerNetwork. layerMapMethods in org.deeplearning4j.nn.multilayer that return Layer Modifier and Type Method Description LayerMultiLayerNetwork. getLayer(int i)LayerMultiLayerNetwork. getLayer(String name)Layer[]MultiLayerNetwork. getLayers()LayerMultiLayerNetwork. getOutputLayer()Get the output layer - i.e., the last layer in the netwokMethods in org.deeplearning4j.nn.multilayer with parameters of type Layer Modifier and Type Method Description voidMultiLayerNetwork. setLayers(Layer[] layers) -
Uses of Layer in org.deeplearning4j.nn.updater
Constructors in org.deeplearning4j.nn.updater with parameters of type Layer Constructor Description LayerUpdater(Layer layer)LayerUpdater(Layer layer, INDArray updaterState)
-