Uses of Interface
org.deeplearning4j.nn.api.Model
-
-
Uses of Model in org.deeplearning4j.earlystopping
Classes in org.deeplearning4j.earlystopping with type parameters of type Model Modifier and Type Class Description class
EarlyStoppingConfiguration<T extends Model>
static class
EarlyStoppingConfiguration.Builder<T extends Model>
interface
EarlyStoppingModelSaver<T extends Model>
class
EarlyStoppingResult<T extends Model>
-
Uses of Model in org.deeplearning4j.earlystopping.listener
Classes in org.deeplearning4j.earlystopping.listener with type parameters of type Model Modifier and Type Interface Description interface
EarlyStoppingListener<T extends Model>
-
Uses of Model in org.deeplearning4j.earlystopping.saver
Classes in org.deeplearning4j.earlystopping.saver with type parameters of type Model Modifier and Type Class Description class
InMemoryModelSaver<T extends Model>
-
Uses of Model in org.deeplearning4j.earlystopping.scorecalc
Classes in org.deeplearning4j.earlystopping.scorecalc with type parameters of type Model Modifier and Type Interface Description interface
ScoreCalculator<T extends Model>
Methods in org.deeplearning4j.earlystopping.scorecalc with parameters of type Model Modifier and Type Method Description protected INDArray[]
AutoencoderScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)
protected INDArray
AutoencoderScoreCalculator. output(Model net, INDArray input, INDArray fMask, INDArray lMask)
protected INDArray[]
DataSetLossCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)
protected INDArray
DataSetLossCalculator. output(Model network, INDArray input, INDArray fMask, INDArray lMask)
protected INDArray[]
VAEReconErrorScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)
protected INDArray
VAEReconErrorScoreCalculator. output(Model net, INDArray input, INDArray fMask, INDArray lMask)
protected INDArray[]
VAEReconProbScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)
protected INDArray
VAEReconProbScoreCalculator. output(Model network, INDArray input, INDArray fMask, INDArray lMask)
protected double
AutoencoderScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)
protected double
AutoencoderScoreCalculator. scoreMinibatch(Model network, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output)
protected double
DataSetLossCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)
protected double
VAEReconErrorScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)
protected double
VAEReconErrorScoreCalculator. scoreMinibatch(Model network, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output)
protected double
VAEReconProbScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)
protected double
VAEReconProbScoreCalculator. scoreMinibatch(Model net, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output)
-
Uses of Model in org.deeplearning4j.earlystopping.scorecalc.base
Classes in org.deeplearning4j.earlystopping.scorecalc.base with type parameters of type Model Modifier and Type Class Description class
BaseIEvaluationScoreCalculator<T extends Model,U extends IEvaluation>
class
BaseScoreCalculator<T extends Model>
-
Uses of Model in org.deeplearning4j.earlystopping.trainer
Classes in org.deeplearning4j.earlystopping.trainer with type parameters of type Model Modifier and Type Class Description class
BaseEarlyStoppingTrainer<T extends Model>
interface
IEarlyStoppingTrainer<T extends Model>
Fields in org.deeplearning4j.earlystopping.trainer declared as Model Modifier and Type Field Description protected T
BaseEarlyStoppingTrainer. model
Methods in org.deeplearning4j.earlystopping.trainer with parameters of type Model Modifier and Type Method Description protected void
BaseEarlyStoppingTrainer. triggerEpochListeners(boolean epochStart, Model model, int epochNum)
-
Uses of Model in org.deeplearning4j.nn.adapters
Methods in org.deeplearning4j.nn.adapters with parameters of type Model Modifier and Type Method Description List<DetectedObject>
YoloModelAdapter. apply(Model model, INDArray[] inputs, INDArray[] masks, INDArray[] labelsMasks)
-
Uses of Model in org.deeplearning4j.nn.api
Subinterfaces of Model in org.deeplearning4j.nn.api Modifier and Type Interface Description interface
Classifier
interface
Layer
Methods in org.deeplearning4j.nn.api with parameters of type Model Modifier and Type Method Description T
ModelAdapter. apply(Model model, INDArray[] inputs, INDArray[] inputMasks, INDArray[] labelsMasks)
This method invokes model internally, and does convertion to T -
Uses of Model in org.deeplearning4j.nn.api.layers
Subinterfaces of Model in org.deeplearning4j.nn.api.layers Modifier and Type Interface Description interface
IOutputLayer
interface
RecurrentLayer
-
Uses of Model in org.deeplearning4j.nn.graph
Classes in org.deeplearning4j.nn.graph that implement Model Modifier and Type Class Description class
ComputationGraph
-
Uses of Model in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers that implement Model Modifier and Type Class Description class
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradientsclass
ActivationLayer
class
BaseLayer<LayerConfT extends BaseLayer>
A layer with parametersclass
BaseOutputLayer<LayerConfT extends BaseOutputLayer>
class
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork>
class
DropoutLayer
class
FrozenLayer
class
FrozenLayerWithBackprop
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.class
LossLayer
class
OutputLayer
class
RepeatVector
-
Uses of Model in org.deeplearning4j.nn.layers.convolution
Classes in org.deeplearning4j.nn.layers.convolution that implement Model Modifier and Type Class Description class
Cnn3DLossLayer
class
CnnLossLayer
class
Convolution1DLayer
class
Convolution3DLayer
class
ConvolutionLayer
class
Cropping1DLayer
class
Cropping2DLayer
class
Cropping3DLayer
class
Deconvolution2DLayer
class
Deconvolution3DLayer
class
DepthwiseConvolution2DLayer
class
SeparableConvolution2DLayer
class
SpaceToBatch
class
SpaceToDepth
class
ZeroPadding1DLayer
class
ZeroPadding3DLayer
class
ZeroPaddingLayer
-
Uses of Model in org.deeplearning4j.nn.layers.convolution.subsampling
Classes in org.deeplearning4j.nn.layers.convolution.subsampling that implement Model Modifier and Type Class Description class
Subsampling1DLayer
class
Subsampling3DLayer
class
SubsamplingLayer
-
Uses of Model in org.deeplearning4j.nn.layers.convolution.upsampling
Classes in org.deeplearning4j.nn.layers.convolution.upsampling that implement Model Modifier and Type Class Description class
Upsampling1D
class
Upsampling2D
class
Upsampling3D
-
Uses of Model in org.deeplearning4j.nn.layers.feedforward
Classes in org.deeplearning4j.nn.layers.feedforward that implement Model Modifier and Type Class Description class
PReLU
-
Uses of Model in org.deeplearning4j.nn.layers.feedforward.autoencoder
Classes in org.deeplearning4j.nn.layers.feedforward.autoencoder that implement Model Modifier and Type Class Description class
AutoEncoder
-
Uses of Model in org.deeplearning4j.nn.layers.feedforward.dense
Classes in org.deeplearning4j.nn.layers.feedforward.dense that implement Model Modifier and Type Class Description class
DenseLayer
-
Uses of Model in org.deeplearning4j.nn.layers.feedforward.elementwise
Classes in org.deeplearning4j.nn.layers.feedforward.elementwise that implement Model Modifier and Type Class Description class
ElementWiseMultiplicationLayer
-
Uses of Model in org.deeplearning4j.nn.layers.feedforward.embedding
Classes in org.deeplearning4j.nn.layers.feedforward.embedding that implement Model Modifier and Type Class Description class
EmbeddingLayer
class
EmbeddingSequenceLayer
-
Uses of Model in org.deeplearning4j.nn.layers.normalization
Classes in org.deeplearning4j.nn.layers.normalization that implement Model Modifier and Type Class Description class
BatchNormalization
class
LocalResponseNormalization
-
Uses of Model in org.deeplearning4j.nn.layers.objdetect
Classes in org.deeplearning4j.nn.layers.objdetect that implement Model Modifier and Type Class Description class
Yolo2OutputLayer
-
Uses of Model in org.deeplearning4j.nn.layers.ocnn
Classes in org.deeplearning4j.nn.layers.ocnn that implement Model Modifier and Type Class Description class
OCNNOutputLayer
-
Uses of Model in org.deeplearning4j.nn.layers.pooling
Classes in org.deeplearning4j.nn.layers.pooling that implement Model Modifier and Type Class Description class
GlobalPoolingLayer
-
Uses of Model in org.deeplearning4j.nn.layers.recurrent
Classes in org.deeplearning4j.nn.layers.recurrent that implement Model Modifier and Type Class Description class
BaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer>
class
BidirectionalLayer
class
GravesBidirectionalLSTM
class
GravesLSTM
Deprecated.class
LastTimeStepLayer
class
LSTM
class
MaskZeroLayer
class
RnnLossLayer
class
RnnOutputLayer
class
SimpleRnn
class
TimeDistributedLayer
-
Uses of Model in org.deeplearning4j.nn.layers.samediff
Classes in org.deeplearning4j.nn.layers.samediff that implement Model Modifier and Type Class Description class
SameDiffLayer
class
SameDiffOutputLayer
-
Uses of Model in org.deeplearning4j.nn.layers.training
Classes in org.deeplearning4j.nn.layers.training that implement Model Modifier and Type Class Description class
CenterLossOutputLayer
-
Uses of Model in org.deeplearning4j.nn.layers.util
Classes in org.deeplearning4j.nn.layers.util that implement Model Modifier and Type Class Description class
MaskLayer
-
Uses of Model in org.deeplearning4j.nn.layers.variational
Classes in org.deeplearning4j.nn.layers.variational that implement Model Modifier and Type Class Description class
VariationalAutoencoder
-
Uses of Model in org.deeplearning4j.nn.layers.wrapper
Classes in org.deeplearning4j.nn.layers.wrapper that implement Model Modifier and Type Class Description class
BaseWrapperLayer
-
Uses of Model in org.deeplearning4j.nn.multilayer
Classes in org.deeplearning4j.nn.multilayer that implement Model Modifier and Type Class Description class
MultiLayerNetwork
-
Uses of Model in org.deeplearning4j.nn.updater
Classes in org.deeplearning4j.nn.updater with type parameters of type Model Modifier and Type Class Description class
BaseMultiLayerUpdater<T extends Model>
Fields in org.deeplearning4j.nn.updater declared as Model Modifier and Type Field Description protected T
BaseMultiLayerUpdater. network
Methods in org.deeplearning4j.nn.updater with parameters of type Model Modifier and Type Method Description static Updater
UpdaterCreator. getUpdater(Model layer)
-
Uses of Model in org.deeplearning4j.optimize
Methods in org.deeplearning4j.optimize with parameters of type Model Modifier and Type Method Description Solver.Builder
Solver.Builder. model(Model model)
-
Uses of Model in org.deeplearning4j.optimize.api
Methods in org.deeplearning4j.optimize.api with parameters of type Model Modifier and Type Method Description void
BaseTrainingListener. iterationDone(Model model, int iteration, int epoch)
abstract void
IterationListener. iterationDone(Model model, int iteration, int epoch)
Deprecated.Event listener for each iterationvoid
TrainingListener. iterationDone(Model model, int iteration, int epoch)
Event listener for each iteration.void
BaseTrainingListener. onBackwardPass(Model model)
void
TrainingListener. onBackwardPass(Model model)
Called once per iteration (backward pass) after gradients have been calculated, and updated Gradients are available viagradient()
.void
BaseTrainingListener. onEpochEnd(Model model)
void
TrainingListener. onEpochEnd(Model model)
Called once at the end of each epoch, when using methods such asMultiLayerNetwork.fit(DataSetIterator)
,ComputationGraph.fit(DataSetIterator)
orComputationGraph.fit(MultiDataSetIterator)
void
BaseTrainingListener. onEpochStart(Model model)
void
TrainingListener. onEpochStart(Model model)
Called once at the start of each epoch, when using methods such asMultiLayerNetwork.fit(DataSetIterator)
,ComputationGraph.fit(DataSetIterator)
orComputationGraph.fit(MultiDataSetIterator)
void
BaseTrainingListener. onForwardPass(Model model, List<INDArray> activations)
void
BaseTrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)
void
TrainingListener. onForwardPass(Model model, List<INDArray> activations)
Called once per iteration (forward pass) for activations (usually for aMultiLayerNetwork
), only at training timevoid
TrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)
Called once per iteration (forward pass) for activations (usually for aComputationGraph
), only at training timevoid
BaseTrainingListener. onGradientCalculation(Model model)
void
TrainingListener. onGradientCalculation(Model model)
Called once per iteration (backward pass) before the gradients are updated Gradients are available viagradient()
.void
ConvexOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
Update the gradient according to the configuration such as adagrad, momentum, and sparsity -
Uses of Model in org.deeplearning4j.optimize.listeners
Methods in org.deeplearning4j.optimize.listeners with parameters of type Model Modifier and Type Method Description protected void
FailureTestingListener. call(FailureTestingListener.CallType callType, Model model)
protected static int
CheckpointListener. getEpoch(Model model)
protected static int
CheckpointListener. getIter(Model model)
protected static String
CheckpointListener. getModelType(Model model)
protected void
EvaluativeListener. invokeListener(Model model)
void
CheckpointListener. iterationDone(Model model, int iteration, int epoch)
void
CollectScoresIterationListener. iterationDone(Model model, int iteration, int epoch)
void
CollectScoresListener. iterationDone(Model model, int iteration, int epoch)
void
ComposableIterationListener. iterationDone(Model model, int iteration, int epoch)
Deprecated.void
EvaluativeListener. iterationDone(Model model, int iteration, int epoch)
Event listener for each iterationvoid
FailureTestingListener. iterationDone(Model model, int iteration, int epoch)
void
PerformanceListener. iterationDone(Model model, int iteration, int epoch)
void
ScoreIterationListener. iterationDone(Model model, int iteration, int epoch)
void
SleepyTrainingListener. iterationDone(Model model, int iteration, int epoch)
void
TimeIterationListener. iterationDone(Model model, int iteration, int epoch)
void
FailureTestingListener. onBackwardPass(Model model)
void
SleepyTrainingListener. onBackwardPass(Model model)
void
CheckpointListener. onEpochEnd(Model model)
void
EvaluativeListener. onEpochEnd(Model model)
void
FailureTestingListener. onEpochEnd(Model model)
void
SleepyTrainingListener. onEpochEnd(Model model)
void
EvaluativeListener. onEpochStart(Model model)
void
FailureTestingListener. onEpochStart(Model model)
void
SleepyTrainingListener. onEpochStart(Model model)
void
FailureTestingListener. onForwardPass(Model model, List<INDArray> activations)
void
FailureTestingListener. onForwardPass(Model model, Map<String,INDArray> activations)
void
SleepyTrainingListener. onForwardPass(Model model, List<INDArray> activations)
void
SleepyTrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)
void
FailureTestingListener. onGradientCalculation(Model model)
void
SleepyTrainingListener. onGradientCalculation(Model model)
boolean
FailureTestingListener.And. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
abstract boolean
FailureTestingListener.FailureTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
If true: trigger the failure.boolean
FailureTestingListener.HostNameTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
boolean
FailureTestingListener.IterationEpochTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
boolean
FailureTestingListener.Or. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
boolean
FailureTestingListener.RandomProb. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
boolean
FailureTestingListener.TimeSinceInitializedTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
boolean
FailureTestingListener.UserNameTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)
-
Uses of Model in org.deeplearning4j.optimize.listeners.callbacks
Methods in org.deeplearning4j.optimize.listeners.callbacks with parameters of type Model Modifier and Type Method Description void
EvaluationCallback. call(EvaluativeListener listener, Model model, long invocationsCount, IEvaluation[] evaluations)
void
ModelSavingCallback. call(EvaluativeListener listener, Model model, long invocationsCount, IEvaluation[] evaluations)
protected void
ModelSavingCallback. save(Model model, String filename)
This method saves model -
Uses of Model in org.deeplearning4j.optimize.solvers
Fields in org.deeplearning4j.optimize.solvers declared as Model Modifier and Type Field Description protected Model
BaseOptimizer. model
Methods in org.deeplearning4j.optimize.solvers with parameters of type Model Modifier and Type Method Description static void
BaseOptimizer. applyConstraints(Model model)
static int
BaseOptimizer. getEpochCount(Model model)
static int
BaseOptimizer. getIterationCount(Model model)
static void
BaseOptimizer. incrementIterationCount(Model model, int incrementBy)
void
BaseOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
Constructors in org.deeplearning4j.optimize.solvers with parameters of type Model Constructor Description BackTrackLineSearch(Model optimizable, ConvexOptimizer optimizer)
BackTrackLineSearch(Model layer, StepFunction stepFunction, ConvexOptimizer optimizer)
BaseOptimizer(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)
ConjugateGradient(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)
LBFGS(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)
LineGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)
StochasticGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)
-
Uses of Model in org.deeplearning4j.optimize.solvers.accumulation
Methods in org.deeplearning4j.optimize.solvers.accumulation with parameters of type Model Modifier and Type Method Description static long
EncodedGradientsAccumulator. getOptimalBufferSize(Model model, int numWorkers, int queueSize)
-
Uses of Model in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type Model Modifier and Type Method Description static String
CrashReportingUtil. generateMemoryStatus(Model net, int minibatch, InputType... inputTypes)
Generate memory/system report as a String, for the specified network.static INDArray
NetworkUtils. output(Model model, INDArray input)
Currently supportsMultiLayerNetwork
andComputationGraph
models.static Task
ModelSerializer. taskByModel(Model model)
static void
CrashReportingUtil. writeMemoryCrashDump(@NonNull Model net, @NonNull Throwable e)
Generate and write the crash dump to the crash dump root directory (by default, the working directory).static void
ModelSerializer. writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater)
Write a model to a filestatic void
ModelSerializer. writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater, DataNormalization dataNormalization)
Write a model to a filestatic void
ModelSerializer. writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater)
Write a model to an output streamstatic void
ModelSerializer. writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater, DataNormalization dataNormalization)
Write a model to an output streamstatic void
ModelSerializer. writeModel(@NonNull Model model, @NonNull String path, boolean saveUpdater)
Write a model to a file path
-