Uses of Interface
org.deeplearning4j.nn.api.Trainable
-
-
Uses of Trainable in org.deeplearning4j.nn.api
Subinterfaces of Trainable in org.deeplearning4j.nn.api Modifier and Type Interface Description interface
Layer
Methods in org.deeplearning4j.nn.api with parameters of type Trainable Modifier and Type Method Description void
Updater. setStateViewArray(Trainable layer, INDArray viewArray, boolean initialize)
Set the internal (historical) state view array for this updatervoid
Updater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
Updater: updates the model -
Uses of Trainable in org.deeplearning4j.nn.api.layers
Subinterfaces of Trainable in org.deeplearning4j.nn.api.layers Modifier and Type Interface Description interface
IOutputLayer
interface
RecurrentLayer
-
Uses of Trainable in org.deeplearning4j.nn.graph.vertex
Subinterfaces of Trainable in org.deeplearning4j.nn.graph.vertex Modifier and Type Interface Description interface
GraphVertex
Classes in org.deeplearning4j.nn.graph.vertex that implement Trainable Modifier and Type Class Description class
BaseGraphVertex
class
BaseWrapperVertex
-
Uses of Trainable in org.deeplearning4j.nn.graph.vertex.impl
Classes in org.deeplearning4j.nn.graph.vertex.impl that implement Trainable Modifier and Type Class Description class
ElementWiseVertex
class
FrozenVertex
class
InputVertex
class
L2NormalizeVertex
class
L2Vertex
class
LayerVertex
class
MergeVertex
class
PoolHelperVertex
class
PreprocessorVertex
class
ReshapeVertex
class
ScaleVertex
class
ShiftVertex
class
StackVertex
class
SubsetVertex
class
UnstackVertex
-
Uses of Trainable in org.deeplearning4j.nn.graph.vertex.impl.rnn
Classes in org.deeplearning4j.nn.graph.vertex.impl.rnn that implement Trainable Modifier and Type Class Description class
DuplicateToTimeSeriesVertex
class
LastTimeStepVertex
class
ReverseTimeSeriesVertex
-
Uses of Trainable in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers that implement Trainable Modifier and Type Class Description class
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradientsclass
ActivationLayer
class
BaseLayer<LayerConfT extends BaseLayer>
A layer with parametersclass
BaseOutputLayer<LayerConfT extends BaseOutputLayer>
class
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork>
class
DropoutLayer
class
FrozenLayer
class
FrozenLayerWithBackprop
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.class
LossLayer
class
OutputLayer
class
RepeatVector
-
Uses of Trainable in org.deeplearning4j.nn.layers.convolution
Classes in org.deeplearning4j.nn.layers.convolution that implement Trainable Modifier and Type Class Description class
Cnn3DLossLayer
class
CnnLossLayer
class
Convolution1DLayer
class
Convolution3DLayer
class
ConvolutionLayer
class
Cropping1DLayer
class
Cropping2DLayer
class
Cropping3DLayer
class
Deconvolution2DLayer
class
Deconvolution3DLayer
class
DepthwiseConvolution2DLayer
class
SeparableConvolution2DLayer
class
SpaceToBatch
class
SpaceToDepth
class
ZeroPadding1DLayer
class
ZeroPadding3DLayer
class
ZeroPaddingLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.convolution.subsampling
Classes in org.deeplearning4j.nn.layers.convolution.subsampling that implement Trainable Modifier and Type Class Description class
Subsampling1DLayer
class
Subsampling3DLayer
class
SubsamplingLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.convolution.upsampling
Classes in org.deeplearning4j.nn.layers.convolution.upsampling that implement Trainable Modifier and Type Class Description class
Upsampling1D
class
Upsampling2D
class
Upsampling3D
-
Uses of Trainable in org.deeplearning4j.nn.layers.feedforward
Classes in org.deeplearning4j.nn.layers.feedforward that implement Trainable Modifier and Type Class Description class
PReLU
-
Uses of Trainable in org.deeplearning4j.nn.layers.feedforward.autoencoder
Classes in org.deeplearning4j.nn.layers.feedforward.autoencoder that implement Trainable Modifier and Type Class Description class
AutoEncoder
-
Uses of Trainable in org.deeplearning4j.nn.layers.feedforward.dense
Classes in org.deeplearning4j.nn.layers.feedforward.dense that implement Trainable Modifier and Type Class Description class
DenseLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.feedforward.elementwise
Classes in org.deeplearning4j.nn.layers.feedforward.elementwise that implement Trainable Modifier and Type Class Description class
ElementWiseMultiplicationLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.feedforward.embedding
Classes in org.deeplearning4j.nn.layers.feedforward.embedding that implement Trainable Modifier and Type Class Description class
EmbeddingLayer
class
EmbeddingSequenceLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.normalization
Classes in org.deeplearning4j.nn.layers.normalization that implement Trainable Modifier and Type Class Description class
BatchNormalization
class
LocalResponseNormalization
-
Uses of Trainable in org.deeplearning4j.nn.layers.objdetect
Classes in org.deeplearning4j.nn.layers.objdetect that implement Trainable Modifier and Type Class Description class
Yolo2OutputLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.ocnn
Classes in org.deeplearning4j.nn.layers.ocnn that implement Trainable Modifier and Type Class Description class
OCNNOutputLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.pooling
Classes in org.deeplearning4j.nn.layers.pooling that implement Trainable Modifier and Type Class Description class
GlobalPoolingLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.recurrent
Classes in org.deeplearning4j.nn.layers.recurrent that implement Trainable Modifier and Type Class Description class
BaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer>
class
BidirectionalLayer
class
GravesBidirectionalLSTM
class
GravesLSTM
Deprecated.class
LastTimeStepLayer
class
LSTM
class
MaskZeroLayer
class
RnnLossLayer
class
RnnOutputLayer
class
SimpleRnn
class
TimeDistributedLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.samediff
Classes in org.deeplearning4j.nn.layers.samediff that implement Trainable Modifier and Type Class Description class
SameDiffGraphVertex
class
SameDiffLayer
class
SameDiffOutputLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.training
Classes in org.deeplearning4j.nn.layers.training that implement Trainable Modifier and Type Class Description class
CenterLossOutputLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.util
Classes in org.deeplearning4j.nn.layers.util that implement Trainable Modifier and Type Class Description class
MaskLayer
-
Uses of Trainable in org.deeplearning4j.nn.layers.variational
Classes in org.deeplearning4j.nn.layers.variational that implement Trainable Modifier and Type Class Description class
VariationalAutoencoder
-
Uses of Trainable in org.deeplearning4j.nn.layers.wrapper
Classes in org.deeplearning4j.nn.layers.wrapper that implement Trainable Modifier and Type Class Description class
BaseWrapperLayer
-
Uses of Trainable in org.deeplearning4j.nn.multilayer
Classes in org.deeplearning4j.nn.multilayer that implement Trainable Modifier and Type Class Description class
MultiLayerNetwork
-
Uses of Trainable in org.deeplearning4j.nn.updater
Fields in org.deeplearning4j.nn.updater with type parameters of type Trainable Modifier and Type Field Description protected Map<String,Trainable>
BaseMultiLayerUpdater. layersByName
Methods in org.deeplearning4j.nn.updater that return Trainable Modifier and Type Method Description protected abstract Trainable[]
BaseMultiLayerUpdater. getOrderedLayers()
protected Trainable[]
LayerUpdater. getOrderedLayers()
protected Trainable[]
MultiLayerUpdater. getOrderedLayers()
Methods in org.deeplearning4j.nn.updater with parameters of type Trainable Modifier and Type Method Description protected void
UpdaterBlock. applyRegularization(Regularization.ApplyStep step, Trainable layer, String paramName, INDArray gradientView, INDArray paramsView, int iter, int epoch, double lr)
Apply L1 and L2 regularization, if necessary.void
BaseMultiLayerUpdater. preApply(Trainable layer, Gradient gradient, int iteration)
Pre-apply: Apply gradient normalization/clippingvoid
BaseMultiLayerUpdater. setStateViewArray(Trainable layer, INDArray viewArray, boolean initialize)
void
BaseMultiLayerUpdater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)
static boolean
UpdaterUtils. updaterConfigurationsEquals(Trainable layer1, String param1, Trainable layer2, String param2)
-
Uses of Trainable in org.deeplearning4j.nn.updater.graph
Fields in org.deeplearning4j.nn.updater.graph declared as Trainable Modifier and Type Field Description protected Trainable[]
ComputationGraphUpdater. orderedLayers
Methods in org.deeplearning4j.nn.updater.graph that return Trainable Modifier and Type Method Description protected Trainable[]
ComputationGraphUpdater. getOrderedLayers()
-