Package org.deeplearning4j.nn.conf
Class MultiLayerConfiguration
- java.lang.Object
-
- org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- All Implemented Interfaces:
Serializable,Cloneable
public class MultiLayerConfiguration extends Object implements Serializable, Cloneable
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classMultiLayerConfiguration.Builder
-
Field Summary
Fields Modifier and Type Field Description protected BackpropTypebackpropTypeprotected CacheModecacheModeprotected List<NeuralNetConfiguration>confsprotected DataTypedataTypeprotected intepochCountprotected WorkspaceModeinferenceWorkspaceModeprotected Map<Integer,InputPreProcessor>inputPreProcessorsprotected intiterationCountprotected inttbpttBackLengthprotected inttbpttFwdLengthprotected WorkspaceModetrainingWorkspaceModeprotected booleanvalidateOutputLayerConfig
-
Constructor Summary
Constructors Constructor Description MultiLayerConfiguration()
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description MultiLayerConfigurationclone()static MultiLayerConfigurationfromJson(String json)Create a neural net configuration from jsonstatic MultiLayerConfigurationfromYaml(String json)Create a neural net configuration from jsonNeuralNetConfigurationgetConf(int i)intgetEpochCount()InputPreProcessorgetInputPreProcess(int curr)List<InputType>getLayerActivationTypes(@NonNull InputType inputType)For the given input shape/type for the network, return a list of activation sizes for each layer in the network.
i.e., list.get(i) is the output activation sizes for layer iNetworkMemoryReportgetMemoryReport(InputType inputType)Get aMemoryReportfor the given MultiLayerConfiguration.voidsetEpochCount(int epochCount)StringtoJson()StringtoString()StringtoYaml()
-
-
-
Field Detail
-
confs
protected List<NeuralNetConfiguration> confs
-
inputPreProcessors
protected Map<Integer,InputPreProcessor> inputPreProcessors
-
backpropType
protected BackpropType backpropType
-
tbpttFwdLength
protected int tbpttFwdLength
-
tbpttBackLength
protected int tbpttBackLength
-
validateOutputLayerConfig
protected boolean validateOutputLayerConfig
-
trainingWorkspaceMode
protected WorkspaceMode trainingWorkspaceMode
-
inferenceWorkspaceMode
protected WorkspaceMode inferenceWorkspaceMode
-
cacheMode
protected CacheMode cacheMode
-
dataType
protected DataType dataType
-
iterationCount
protected int iterationCount
-
epochCount
protected int epochCount
-
-
Method Detail
-
getEpochCount
public int getEpochCount()
-
setEpochCount
public void setEpochCount(int epochCount)
-
toYaml
public String toYaml()
- Returns:
- JSON representation of NN configuration
-
fromYaml
public static MultiLayerConfiguration fromYaml(String json)
Create a neural net configuration from json- Parameters:
json- the neural net configuration from json- Returns:
MultiLayerConfiguration
-
toJson
public String toJson()
- Returns:
- JSON representation of NN configuration
-
fromJson
public static MultiLayerConfiguration fromJson(String json)
Create a neural net configuration from json- Parameters:
json- the neural net configuration from json- Returns:
MultiLayerConfiguration
-
getConf
public NeuralNetConfiguration getConf(int i)
-
clone
public MultiLayerConfiguration clone()
-
getInputPreProcess
public InputPreProcessor getInputPreProcess(int curr)
-
getMemoryReport
public NetworkMemoryReport getMemoryReport(InputType inputType)
Get aMemoryReportfor the given MultiLayerConfiguration. This is used to estimate the memory requirements for the given network configuration and input- Parameters:
inputType- Input types for the network- Returns:
- Memory report for the network
-
getLayerActivationTypes
public List<InputType> getLayerActivationTypes(@NonNull @NonNull InputType inputType)
For the given input shape/type for the network, return a list of activation sizes for each layer in the network.
i.e., list.get(i) is the output activation sizes for layer i- Parameters:
inputType- Input type for the network- Returns:
- A lits of activation types for the network, indexed by layer number
-
-