Class MinMaxNormConstraint
- java.lang.Object
-
- org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
- All Implemented Interfaces:
Serializable
,Cloneable
,LayerConstraint
public class MinMaxNormConstraint extends BaseConstraint
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_RATE
-
Fields inherited from class org.deeplearning4j.nn.conf.constraint.BaseConstraint
DEFAULT_EPSILON, dimensions, epsilon, params
-
-
Constructor Summary
Constructors Constructor Description MinMaxNormConstraint(double min, double max, double rate, int... dimensions)
Apply to weights but not biases by defaultMinMaxNormConstraint(double min, double max, double rate, Set<String> paramNames, int... dimensions)
MinMaxNormConstraint(double min, double max, int... dimensions)
Apply to weights but not biases by default
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
apply(INDArray param)
MinMaxNormConstraint
clone()
-
Methods inherited from class org.deeplearning4j.nn.conf.constraint.BaseConstraint
applyConstraint, getBroadcastDims
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.layers.LayerConstraint
getParams, setParams
-
-
-
-
Field Detail
-
DEFAULT_RATE
public static final double DEFAULT_RATE
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
MinMaxNormConstraint
public MinMaxNormConstraint(double min, double max, int... dimensions)
Apply to weights but not biases by default- Parameters:
max
- Maximum L2 valuemin
- Minimum L2 valuedimensions
- Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of parameters which have order [depthOut, depthIn, kH, kW]
-
MinMaxNormConstraint
public MinMaxNormConstraint(double min, double max, double rate, int... dimensions)
Apply to weights but not biases by default- Parameters:
max
- Maximum L2 valuemin
- Minimum L2 valuerate
- Constraint ratedimensions
- Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of parameters which have order [depthOut, depthIn, kH, kW]
-
MinMaxNormConstraint
public MinMaxNormConstraint(double min, double max, double rate, Set<String> paramNames, int... dimensions)
- Parameters:
max
- Maximum L2 valuemin
- Minimum L2 valuerate
- Constraint rateparamNames
- Which parameter names to apply constraint todimensions
- Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of parameters which have order [depthOut, depthIn, kH, kW]
-
-
Method Detail
-
apply
public void apply(INDArray param)
- Specified by:
apply
in classBaseConstraint
-
clone
public MinMaxNormConstraint clone()
- Specified by:
clone
in interfaceLayerConstraint
- Specified by:
clone
in classBaseConstraint
-
-