Uses of Class
org.deeplearning4j.nn.conf.layers.Layer
-
-
Uses of Layer in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api with parameters of type Layer Modifier and Type Method Description List<String>
ParamInitializer. biasKeys(Layer layer)
Bias parameter keys given the layer configurationboolean
ParamInitializer. isBiasParam(Layer layer, String key)
Is the specified parameter a bias?boolean
ParamInitializer. isWeightParam(Layer layer, String key)
Is the specified parameter a weight?long
ParamInitializer. numParams(Layer layer)
List<String>
ParamInitializer. paramKeys(Layer layer)
Get a list of all parameter keys given the layer configurationList<String>
ParamInitializer. weightKeys(Layer layer)
Weight parameter keys given the layer configuration -
Uses of Layer in org.deeplearning4j.nn.conf
Fields in org.deeplearning4j.nn.conf declared as Layer Modifier and Type Field Description protected Layer
NeuralNetConfiguration.Builder. layer
protected Layer
NeuralNetConfiguration. layer
Methods in org.deeplearning4j.nn.conf with parameters of type Layer Modifier and Type Method Description ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. addLayer(String layerName, Layer layer, String... layerInputs)
Add a layer, with noInputPreProcessor
, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. addLayer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)
Add a layer and anInputPreProcessor
, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. appendLayer(String layerName, Layer layer)
Add a layer, with noInputPreProcessor
, with the specified name and input from the last added layer/vertex.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. appendLayer(String layerName, Layer layer, InputPreProcessor preProcessor)
Add a layer and anInputPreProcessor
, with the specified name and input from the last added layer/vertex.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. layer(int layerName, Layer layer, String... layerInputs)
Add a layer, with noInputPreProcessor
, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. layer(String layerName, Layer layer, String... layerInputs)
Add a layer, with noInputPreProcessor
, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilder
ComputationGraphConfiguration.GraphBuilder. layer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)
Add a layer and anInputPreProcessor
, with the specified name and specified inputs.NeuralNetConfiguration.Builder
NeuralNetConfiguration.Builder. layer(Layer layer)
Layer class.NeuralNetConfiguration.ListBuilder
NeuralNetConfiguration.ListBuilder. layer(int ind, @NonNull Layer layer)
NeuralNetConfiguration.ListBuilder
NeuralNetConfiguration.ListBuilder. layer(Layer layer)
NeuralNetConfiguration.ListBuilder
NeuralNetConfiguration.Builder. list(Layer... layers)
Create a ListBuilder (for creating a MultiLayerConfiguration) with the specified layers
Usage: -
Uses of Layer in org.deeplearning4j.nn.conf.layers
Methods in org.deeplearning4j.nn.conf.layers with type parameters of type Layer Modifier and Type Method Description <E extends Layer>
ECapsuleLayer.Builder. build()
<E extends Layer>
ECapsuleStrengthLayer.Builder. build()
abstract <E extends Layer>
ELayer.Builder. build()
<E extends Layer>
EPrimaryCapsules.Builder. build()
Methods in org.deeplearning4j.nn.conf.layers that return Layer Modifier and Type Method Description Layer
Layer. clone()
Methods in org.deeplearning4j.nn.conf.layers with parameters of type Layer Modifier and Type Method Description static void
LayerValidation. generalValidation(String layerName, Layer layer, IDropout iDropout, List<Regularization> regularization, List<Regularization> regularizationBias, List<LayerConstraint> allParamConstraints, List<LayerConstraint> weightConstraints, List<LayerConstraint> biasConstraints)
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.convolutional
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.convolutional Modifier and Type Class Description class
Cropping1D
class
Cropping2D
class
Cropping3D
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.misc
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.misc Modifier and Type Class Description class
ElementWiseMultiplicationLayer
class
FrozenLayer
class
FrozenLayerWithBackprop
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.class
RepeatVector
Fields in org.deeplearning4j.nn.conf.layers.misc declared as Layer Modifier and Type Field Description protected Layer
FrozenLayer. layer
Methods in org.deeplearning4j.nn.conf.layers.misc that return Layer Modifier and Type Method Description Layer
FrozenLayer. clone()
Layer
FrozenLayerWithBackprop. clone()
Methods in org.deeplearning4j.nn.conf.layers.misc with parameters of type Layer Modifier and Type Method Description FrozenLayer.Builder
FrozenLayer.Builder. layer(Layer layer)
Constructors in org.deeplearning4j.nn.conf.layers.misc with parameters of type Layer Constructor Description FrozenLayer(Layer layer)
FrozenLayerWithBackprop(Layer layer)
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.objdetect
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.objdetect Modifier and Type Class Description class
Yolo2OutputLayer
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.recurrent
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.recurrent Modifier and Type Class Description class
Bidirectional
class
LastTimeStep
class
SimpleRnn
class
TimeDistributed
Methods in org.deeplearning4j.nn.conf.layers.recurrent that return Layer Modifier and Type Method Description Layer
LastTimeStep. getUnderlying()
Methods in org.deeplearning4j.nn.conf.layers.recurrent with parameters of type Layer Modifier and Type Method Description Bidirectional.Builder
Bidirectional.Builder. rnnLayer(Layer layer)
void
Bidirectional.Builder. setLayer(Layer layer)
Constructors in org.deeplearning4j.nn.conf.layers.recurrent with parameters of type Layer Constructor Description Bidirectional(@NonNull Layer layer)
Create a Bidirectional wrapper, with the default Mode (CONCAT) for the specified layerBidirectional(@NonNull Bidirectional.Mode mode, @NonNull Layer layer)
Create a Bidirectional wrapper for the specified layerLastTimeStep(Layer underlying)
TimeDistributed(@NonNull Layer underlying, RNNFormat rnnDataFormat)
TimeDistributed(Layer underlying)
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.samediff
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.samediff Modifier and Type Class Description class
AbstractSameDiffLayer
class
SameDiffLambdaLayer
class
SameDiffLayer
class
SameDiffOutputLayer
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.util
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.util Modifier and Type Class Description class
MaskLayer
class
MaskZeroLayer
Methods in org.deeplearning4j.nn.conf.layers.util with parameters of type Layer Modifier and Type Method Description MaskZeroLayer.Builder
MaskZeroLayer.Builder. setUnderlying(Layer underlying)
MaskZeroLayer.Builder
MaskZeroLayer.Builder. underlying(Layer underlying)
Constructors in org.deeplearning4j.nn.conf.layers.util with parameters of type Layer Constructor Description MaskZeroLayer(Layer underlying, double maskingValue)
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.variational
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.variational Modifier and Type Class Description class
VariationalAutoencoder
-
Uses of Layer in org.deeplearning4j.nn.conf.layers.wrapper
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.wrapper Modifier and Type Class Description class
BaseWrapperLayer
Fields in org.deeplearning4j.nn.conf.layers.wrapper declared as Layer Modifier and Type Field Description protected Layer
BaseWrapperLayer. underlying
Constructors in org.deeplearning4j.nn.conf.layers.wrapper with parameters of type Layer Constructor Description BaseWrapperLayer(Layer underlying)
-
Uses of Layer in org.deeplearning4j.nn.conf.ocnn
Subclasses of Layer in org.deeplearning4j.nn.conf.ocnn Modifier and Type Class Description class
OCNNOutputLayer
-
Uses of Layer in org.deeplearning4j.nn.conf.serde
Methods in org.deeplearning4j.nn.conf.serde with parameters of type Layer Modifier and Type Method Description protected boolean
BaseNetConfigDeserializer. requiresActivationFromLegacy(Layer[] layers)
protected boolean
BaseNetConfigDeserializer. requiresDropoutFromLegacy(Layer[] layers)
protected boolean
BaseNetConfigDeserializer. requiresIUpdaterFromLegacy(Layer[] layers)
protected boolean
BaseNetConfigDeserializer. requiresLegacyLossHandling(Layer[] layers)
protected boolean
BaseNetConfigDeserializer. requiresRegularizationFromLegacy(Layer[] layers)
protected boolean
BaseNetConfigDeserializer. requiresWeightInitFromLegacy(Layer[] layers)
-
Uses of Layer in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers with type parameters of type Layer Modifier and Type Class Description class
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradients -
Uses of Layer in org.deeplearning4j.nn.layers.ocnn
Methods in org.deeplearning4j.nn.layers.ocnn with parameters of type Layer Modifier and Type Method Description List<String>
OCNNParamInitializer. biasKeys(Layer layer)
boolean
OCNNParamInitializer. isBiasParam(Layer layer, String key)
boolean
OCNNParamInitializer. isWeightParam(Layer layer, String key)
long
OCNNParamInitializer. numParams(Layer layer)
List<String>
OCNNParamInitializer. paramKeys(Layer layer)
List<String>
OCNNParamInitializer. weightKeys(Layer layer)
-
Uses of Layer in org.deeplearning4j.nn.layers.util
Subclasses of Layer in org.deeplearning4j.nn.layers.util Modifier and Type Class Description class
IdentityLayer
-
Uses of Layer in org.deeplearning4j.nn.params
Methods in org.deeplearning4j.nn.params with parameters of type Layer Modifier and Type Method Description List<String>
BatchNormalizationParamInitializer. biasKeys(Layer layer)
List<String>
BidirectionalParamInitializer. biasKeys(Layer layer)
List<String>
ConvolutionParamInitializer. biasKeys(Layer layer)
List<String>
DefaultParamInitializer. biasKeys(Layer layer)
List<String>
DepthwiseConvolutionParamInitializer. biasKeys(Layer layer)
List<String>
EmptyParamInitializer. biasKeys(Layer layer)
List<String>
FrozenLayerParamInitializer. biasKeys(Layer layer)
List<String>
FrozenLayerWithBackpropParamInitializer. biasKeys(Layer layer)
List<String>
GravesBidirectionalLSTMParamInitializer. biasKeys(Layer layer)
List<String>
GravesLSTMParamInitializer. biasKeys(Layer layer)
List<String>
LSTMParamInitializer. biasKeys(Layer layer)
List<String>
PReLUParamInitializer. biasKeys(Layer layer)
List<String>
SameDiffParamInitializer. biasKeys(Layer layer)
List<String>
SeparableConvolutionParamInitializer. biasKeys(Layer layer)
List<String>
SimpleRnnParamInitializer. biasKeys(Layer layer)
List<String>
VariationalAutoencoderParamInitializer. biasKeys(Layer layer)
List<String>
WrapperLayerParamInitializer. biasKeys(Layer layer)
protected boolean
DefaultParamInitializer. hasBias(Layer layer)
protected boolean
DefaultParamInitializer. hasLayerNorm(Layer layer)
protected boolean
SimpleRnnParamInitializer. hasLayerNorm(Layer layer)
boolean
BatchNormalizationParamInitializer. isBiasParam(Layer layer, String key)
boolean
BidirectionalParamInitializer. isBiasParam(Layer layer, String key)
boolean
ConvolutionParamInitializer. isBiasParam(Layer layer, String key)
boolean
DefaultParamInitializer. isBiasParam(Layer layer, String key)
boolean
DepthwiseConvolutionParamInitializer. isBiasParam(Layer layer, String key)
boolean
EmptyParamInitializer. isBiasParam(Layer layer, String key)
boolean
FrozenLayerParamInitializer. isBiasParam(Layer layer, String key)
boolean
FrozenLayerWithBackpropParamInitializer. isBiasParam(Layer layer, String key)
boolean
GravesBidirectionalLSTMParamInitializer. isBiasParam(Layer layer, String key)
boolean
GravesLSTMParamInitializer. isBiasParam(Layer layer, String key)
boolean
LSTMParamInitializer. isBiasParam(Layer layer, String key)
boolean
PReLUParamInitializer. isBiasParam(Layer layer, String key)
boolean
SameDiffParamInitializer. isBiasParam(Layer layer, String key)
boolean
SeparableConvolutionParamInitializer. isBiasParam(Layer layer, String key)
boolean
SimpleRnnParamInitializer. isBiasParam(Layer layer, String key)
boolean
VariationalAutoencoderParamInitializer. isBiasParam(Layer layer, String key)
boolean
WrapperLayerParamInitializer. isBiasParam(Layer layer, String key)
boolean
BatchNormalizationParamInitializer. isWeightParam(Layer layer, String key)
boolean
BidirectionalParamInitializer. isWeightParam(Layer layer, String key)
boolean
ConvolutionParamInitializer. isWeightParam(Layer layer, String key)
boolean
DefaultParamInitializer. isWeightParam(Layer layer, String key)
boolean
DepthwiseConvolutionParamInitializer. isWeightParam(Layer layer, String key)
boolean
EmptyParamInitializer. isWeightParam(Layer layer, String key)
boolean
FrozenLayerParamInitializer. isWeightParam(Layer layer, String key)
boolean
FrozenLayerWithBackpropParamInitializer. isWeightParam(Layer layer, String key)
boolean
GravesBidirectionalLSTMParamInitializer. isWeightParam(Layer layer, String key)
boolean
GravesLSTMParamInitializer. isWeightParam(Layer layer, String key)
boolean
LSTMParamInitializer. isWeightParam(Layer layer, String key)
boolean
PReLUParamInitializer. isWeightParam(Layer layer, String key)
boolean
SameDiffParamInitializer. isWeightParam(Layer layer, String key)
boolean
SeparableConvolutionParamInitializer. isWeightParam(Layer layer, String key)
boolean
SimpleRnnParamInitializer. isWeightParam(Layer layer, String key)
boolean
VariationalAutoencoderParamInitializer. isWeightParam(Layer layer, String key)
boolean
WrapperLayerParamInitializer. isWeightParam(Layer layer, String key)
long
BatchNormalizationParamInitializer. numParams(Layer l)
long
BidirectionalParamInitializer. numParams(Layer layer)
long
Convolution3DParamInitializer. numParams(Layer l)
long
ConvolutionParamInitializer. numParams(Layer l)
long
Deconvolution3DParamInitializer. numParams(Layer l)
long
DefaultParamInitializer. numParams(Layer l)
long
DepthwiseConvolutionParamInitializer. numParams(Layer l)
long
ElementWiseParamInitializer. numParams(Layer layer)
long
EmptyParamInitializer. numParams(Layer layer)
long
FrozenLayerParamInitializer. numParams(Layer layer)
long
FrozenLayerWithBackpropParamInitializer. numParams(Layer layer)
long
GravesBidirectionalLSTMParamInitializer. numParams(Layer l)
long
GravesLSTMParamInitializer. numParams(Layer l)
long
LSTMParamInitializer. numParams(Layer l)
long
PReLUParamInitializer. numParams(Layer l)
long
SameDiffParamInitializer. numParams(Layer layer)
long
SeparableConvolutionParamInitializer. numParams(Layer l)
long
SimpleRnnParamInitializer. numParams(Layer layer)
long
WrapperLayerParamInitializer. numParams(Layer layer)
List<String>
BatchNormalizationParamInitializer. paramKeys(Layer layer)
List<String>
BidirectionalParamInitializer. paramKeys(Layer layer)
List<String>
ConvolutionParamInitializer. paramKeys(Layer layer)
List<String>
DefaultParamInitializer. paramKeys(Layer layer)
List<String>
DepthwiseConvolutionParamInitializer. paramKeys(Layer layer)
List<String>
EmptyParamInitializer. paramKeys(Layer layer)
List<String>
FrozenLayerParamInitializer. paramKeys(Layer layer)
List<String>
FrozenLayerWithBackpropParamInitializer. paramKeys(Layer layer)
List<String>
GravesBidirectionalLSTMParamInitializer. paramKeys(Layer layer)
List<String>
GravesLSTMParamInitializer. paramKeys(Layer layer)
List<String>
LSTMParamInitializer. paramKeys(Layer layer)
List<String>
PReLUParamInitializer. paramKeys(Layer layer)
List<String>
SameDiffParamInitializer. paramKeys(Layer layer)
List<String>
SeparableConvolutionParamInitializer. paramKeys(Layer layer)
List<String>
SimpleRnnParamInitializer. paramKeys(Layer layer)
List<String>
VariationalAutoencoderParamInitializer. paramKeys(Layer l)
List<String>
WrapperLayerParamInitializer. paramKeys(Layer layer)
List<String>
BatchNormalizationParamInitializer. weightKeys(Layer layer)
List<String>
BidirectionalParamInitializer. weightKeys(Layer layer)
List<String>
ConvolutionParamInitializer. weightKeys(Layer layer)
List<String>
DefaultParamInitializer. weightKeys(Layer layer)
List<String>
DepthwiseConvolutionParamInitializer. weightKeys(Layer layer)
List<String>
EmptyParamInitializer. weightKeys(Layer layer)
List<String>
FrozenLayerParamInitializer. weightKeys(Layer layer)
List<String>
FrozenLayerWithBackpropParamInitializer. weightKeys(Layer layer)
List<String>
GravesBidirectionalLSTMParamInitializer. weightKeys(Layer layer)
List<String>
GravesLSTMParamInitializer. weightKeys(Layer layer)
List<String>
LSTMParamInitializer. weightKeys(Layer layer)
List<String>
PReLUParamInitializer. weightKeys(Layer layer)
List<String>
SameDiffParamInitializer. weightKeys(Layer layer)
List<String>
SeparableConvolutionParamInitializer. weightKeys(Layer layer)
List<String>
SimpleRnnParamInitializer. weightKeys(Layer layer)
List<String>
VariationalAutoencoderParamInitializer. weightKeys(Layer layer)
List<String>
WrapperLayerParamInitializer. weightKeys(Layer layer)
-
Uses of Layer in org.deeplearning4j.nn.transferlearning
Methods in org.deeplearning4j.nn.transferlearning with parameters of type Layer Modifier and Type Method Description TransferLearning.Builder
TransferLearning.Builder. addLayer(Layer layer)
Add layers to the net Required if layers are removed.TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. addLayer(String layerName, Layer layer, String... layerInputs)
Add a layer of the specified configuration to the computation graphTransferLearning.GraphBuilder
TransferLearning.GraphBuilder. addLayer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)
Add a layer with a specified preprocessor -
Uses of Layer in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type Layer Modifier and Type Method Description static Convolution3D.DataFormat
Convolution3DUtils. getFormatForLayer(Layer inputLayer)
Returns theConvolution3D.DataFormat
for the associated layer.static CNN2DFormat
ConvolutionUtils. getFormatForLayer(Layer layer)
Get the format for a given layer.static RNNFormat
TimeSeriesUtils. getFormatFromRnnLayer(Layer layer)
Get theRNNFormat
from the RNN layer, accounting for the presence of wrapper layers like Bidirectional, LastTimeStep, etcstatic RNNFormat
Convolution1DUtils. getRnnFormatFromLayer(Layer layer)
Get theRNNFormat
for the given layer.static boolean
Convolution1DUtils. hasRnnDataFormat(Layer layer)
Returns true if the given layer has anRNNFormat
.static boolean
Convolution3DUtils. layerHasConvolution3DLayout(Layer layer)
Returns true if any of the layers are 3d convolution, pooling, or upsampling layers including:Convolution3D
,Deconvolution3D
,Subsampling3DLayer
,Upsampling3D
static boolean
ConvolutionUtils. layerHasConvolutionLayout(Layer layer)
Returns true if a layer has aCNN2DFormat
property.static void
OutputLayerUtil. validateOutputLayer(String layerName, Layer layer)
Validate the output layer (or loss layer) configuration, to detect invalid consfiugrations.static void
OutputLayerUtil. validateOutputLayerForClassifierEvaluation(Layer outputLayer, Class<? extends IEvaluation> classifierEval)
Validates if the output layer configuration is valid for classifier evaluation.
-