Uses of Interface
org.deeplearning4j.nn.gradient.Gradient
-
-
Uses of Gradient in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api that return Gradient Modifier and Type Method Description Gradient
Model. gradient()
Get the gradient.Methods in org.deeplearning4j.nn.api that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
Layer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layerPair<Gradient,Double>
Model. gradientAndScore()
Get the gradient and scoreMethods in org.deeplearning4j.nn.api with parameters of type Gradient Modifier and Type Method Description void
Model. update(Gradient gradient)
Update layer weights and biases with gradient changevoid
Updater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
Updater: updates the model -
Uses of Gradient in org.deeplearning4j.nn.api.layers
Methods in org.deeplearning4j.nn.api.layers that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
RecurrentLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
Truncated BPTT equivalent of Layer.backpropGradient(). -
Uses of Gradient in org.deeplearning4j.nn.gradient
Classes in org.deeplearning4j.nn.gradient that implement Gradient Modifier and Type Class Description class
DefaultGradient
-
Uses of Gradient in org.deeplearning4j.nn.graph
Fields in org.deeplearning4j.nn.graph declared as Gradient Modifier and Type Field Description protected Gradient
ComputationGraph. gradient
Methods in org.deeplearning4j.nn.graph that return Gradient Modifier and Type Method Description Gradient
ComputationGraph. backpropGradient(INDArray... epsilons)
Calculate the gradient of the network with respect to some external errors.Gradient
ComputationGraph. gradient()
Methods in org.deeplearning4j.nn.graph that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,Double>
ComputationGraph. gradientAndScore()
Methods in org.deeplearning4j.nn.graph with parameters of type Gradient Modifier and Type Method Description void
ComputationGraph. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.graph.vertex
Methods in org.deeplearning4j.nn.graph.vertex that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray[]>
BaseWrapperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
GraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Do backward pass -
Uses of Gradient in org.deeplearning4j.nn.graph.vertex.impl
Methods in org.deeplearning4j.nn.graph.vertex.impl that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray[]>
ElementWiseVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
InputVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
L2NormalizeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
L2Vertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
LayerVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
MergeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
PoolHelperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
PreprocessorVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ReshapeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ScaleVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ShiftVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
StackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
SubsetVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
UnstackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.graph.vertex.impl.rnn
Methods in org.deeplearning4j.nn.graph.vertex.impl.rnn that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray[]>
DuplicateToTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
LastTimeStepVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ReverseTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers
Fields in org.deeplearning4j.nn.layers declared as Gradient Modifier and Type Field Description protected Gradient
BaseLayer. gradient
Methods in org.deeplearning4j.nn.layers that return Gradient Modifier and Type Method Description protected Gradient
BasePretrainNetwork. createGradient(INDArray wGradient, INDArray vBiasGradient, INDArray hBiasGradient)
Gradient
AbstractLayer. gradient()
Gradient
BaseLayer. gradient()
Gradient
BaseOutputLayer. gradient()
Gets the gradient from one training iterationGradient
FrozenLayer. gradient()
Gradient
LossLayer. gradient()
Gets the gradient from one training iterationGradient
RepeatVector. gradient()
Methods in org.deeplearning4j.nn.layers with parameters of type Gradient Modifier and Type Method Description void
AbstractLayer. update(Gradient gradient)
void
BaseLayer. update(Gradient gradient)
void
FrozenLayer. update(Gradient gradient)
void
FrozenLayerWithBackprop. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.layers.convolution
Methods in org.deeplearning4j.nn.layers.convolution that return Gradient Modifier and Type Method Description Gradient
SpaceToBatch. gradient()
Gradient
SpaceToDepth. gradient()
-
Uses of Gradient in org.deeplearning4j.nn.layers.convolution.subsampling
Methods in org.deeplearning4j.nn.layers.convolution.subsampling that return Gradient Modifier and Type Method Description Gradient
Subsampling3DLayer. gradient()
Gradient
SubsamplingLayer. gradient()
Methods in org.deeplearning4j.nn.layers.convolution.subsampling that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
Subsampling1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Subsampling3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SubsamplingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.convolution.upsampling
Methods in org.deeplearning4j.nn.layers.convolution.upsampling that return Gradient Modifier and Type Method Description Gradient
Upsampling2D. gradient()
Gradient
Upsampling3D. gradient()
Methods in org.deeplearning4j.nn.layers.convolution.upsampling that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
Upsampling1D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Upsampling2D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Upsampling3D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.feedforward
Methods in org.deeplearning4j.nn.layers.feedforward that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
PReLU. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.feedforward.elementwise
Methods in org.deeplearning4j.nn.layers.feedforward.elementwise that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
ElementWiseMultiplicationLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.feedforward.embedding
Methods in org.deeplearning4j.nn.layers.feedforward.embedding that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
EmbeddingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
EmbeddingSequenceLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.mkldnn
Methods in org.deeplearning4j.nn.layers.mkldnn that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
MKLDNNBatchNormHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNConvHelper. backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNLocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNSubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.normalization
Methods in org.deeplearning4j.nn.layers.normalization that return Gradient Modifier and Type Method Description Gradient
BatchNormalization. gradient()
Methods in org.deeplearning4j.nn.layers.normalization that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
BatchNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BatchNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LocalResponseNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.objdetect
Methods in org.deeplearning4j.nn.layers.objdetect that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
Yolo2OutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,Double>
Yolo2OutputLayer. gradientAndScore()
-
Uses of Gradient in org.deeplearning4j.nn.layers.ocnn
Methods in org.deeplearning4j.nn.layers.ocnn that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
OCNNOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.pooling
Methods in org.deeplearning4j.nn.layers.pooling that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
GlobalPoolingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.recurrent
Methods in org.deeplearning4j.nn.layers.recurrent that return Gradient Modifier and Type Method Description Gradient
BidirectionalLayer. gradient()
Gradient
GravesBidirectionalLSTM. gradient()
Gradient
GravesLSTM. gradient()
Deprecated.Gradient
LSTM. gradient()
Methods in org.deeplearning4j.nn.layers.recurrent that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
BidirectionalLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesBidirectionalLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Deprecated.Pair<Gradient,INDArray>
LastTimeStepLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LSTMHelper. backpropGradient(NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MaskZeroLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
RnnLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
RnnOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SimpleRnn. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
TimeDistributedLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
static Pair<Gradient,INDArray>
LSTMHelpers. backpropGradientHelper(BaseRecurrentLayer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LSTMHelper helper, LayerWorkspaceMgr workspaceMgr, boolean isHelperAllowFallback)
Pair<Gradient,Double>
BidirectionalLayer. gradientAndScore()
Pair<Gradient,INDArray>
BidirectionalLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesBidirectionalLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Deprecated.Pair<Gradient,INDArray>
LSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SimpleRnn. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
Methods in org.deeplearning4j.nn.layers.recurrent with parameters of type Gradient Modifier and Type Method Description void
BidirectionalLayer. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.layers.samediff
Methods in org.deeplearning4j.nn.layers.samediff that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
SameDiffLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SameDiffOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
SameDiffGraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.training
Methods in org.deeplearning4j.nn.layers.training that return Gradient Modifier and Type Method Description Gradient
CenterLossOutputLayer. gradient()
Gets the gradient from one training iterationMethods in org.deeplearning4j.nn.layers.training that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
CenterLossOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,Double>
CenterLossOutputLayer. gradientAndScore()
-
Uses of Gradient in org.deeplearning4j.nn.layers.util
Methods in org.deeplearning4j.nn.layers.util that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
MaskLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of Gradient in org.deeplearning4j.nn.layers.variational
Fields in org.deeplearning4j.nn.layers.variational declared as Gradient Modifier and Type Field Description protected Gradient
VariationalAutoencoder. gradient
Methods in org.deeplearning4j.nn.layers.variational that return Gradient Modifier and Type Method Description Gradient
VariationalAutoencoder. gradient()
Methods in org.deeplearning4j.nn.layers.variational that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
VariationalAutoencoder. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,Double>
VariationalAutoencoder. gradientAndScore()
Methods in org.deeplearning4j.nn.layers.variational with parameters of type Gradient Modifier and Type Method Description void
VariationalAutoencoder. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.layers.wrapper
Methods in org.deeplearning4j.nn.layers.wrapper that return Gradient Modifier and Type Method Description Gradient
BaseWrapperLayer. gradient()
Methods in org.deeplearning4j.nn.layers.wrapper that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
BaseWrapperLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,Double>
BaseWrapperLayer. gradientAndScore()
Methods in org.deeplearning4j.nn.layers.wrapper with parameters of type Gradient Modifier and Type Method Description void
BaseWrapperLayer. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.multilayer
Fields in org.deeplearning4j.nn.multilayer declared as Gradient Modifier and Type Field Description protected Gradient
MultiLayerNetwork. gradient
Methods in org.deeplearning4j.nn.multilayer that return Gradient Modifier and Type Method Description Gradient
MultiLayerNetwork. gradient()
Methods in org.deeplearning4j.nn.multilayer that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,INDArray>
MultiLayerNetwork. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
protected Pair<Gradient,INDArray>
MultiLayerNetwork. calcBackpropGradients(INDArray epsilon, boolean withOutputLayer, boolean tbptt, boolean returnInputActGrad)
Calculate gradients and errors.Pair<Gradient,INDArray>
MultiLayerNetwork. calculateGradients(@NonNull INDArray features, @NonNull INDArray label, INDArray fMask, INDArray labelMask)
Calculate parameter gradients and input activation gradients given the input and labels, and optionally mask arraysPair<Gradient,Double>
MultiLayerNetwork. gradientAndScore()
Methods in org.deeplearning4j.nn.multilayer with parameters of type Gradient Modifier and Type Method Description void
MultiLayerNetwork. update(Gradient gradient)
-
Uses of Gradient in org.deeplearning4j.nn.updater
Methods in org.deeplearning4j.nn.updater with parameters of type Gradient Modifier and Type Method Description protected void
BaseMultiLayerUpdater. divideByMinibatch(boolean isExternal, Gradient gradient, int batchSize)
void
BaseMultiLayerUpdater. preApply(Trainable layer, Gradient gradient, int iteration)
Pre-apply: Apply gradient normalization/clippingvoid
BaseMultiLayerUpdater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)
void
BaseMultiLayerUpdater. update(Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)
Update the gradient for the model. -
Uses of Gradient in org.deeplearning4j.optimize.api
Methods in org.deeplearning4j.optimize.api that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,Double>
ConvexOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)
The gradient and score for this optimizerMethods in org.deeplearning4j.optimize.api with parameters of type Gradient Modifier and Type Method Description void
ConvexOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
Update the gradient according to the configuration such as adagrad, momentum, and sparsityMethod parameters in org.deeplearning4j.optimize.api with type arguments of type Gradient Modifier and Type Method Description void
ConvexOptimizer. setupSearchState(Pair<Gradient,Double> pair)
Based on the gradient and score setup a search state -
Uses of Gradient in org.deeplearning4j.optimize.solvers
Methods in org.deeplearning4j.optimize.solvers that return types with arguments of type Gradient Modifier and Type Method Description Pair<Gradient,Double>
BaseOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)
Methods in org.deeplearning4j.optimize.solvers with parameters of type Gradient Modifier and Type Method Description void
BaseOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
Method parameters in org.deeplearning4j.optimize.solvers with type arguments of type Gradient Modifier and Type Method Description void
BaseOptimizer. setupSearchState(Pair<Gradient,Double> pair)
Setup the initial search statevoid
LBFGS. setupSearchState(Pair<Gradient,Double> pair)
-