Uses of Class
org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Layer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set inputINDArray
Layer. activate(INDArray input, boolean training, LayerWorkspaceMgr mgr)
Perform forward pass and return the activations array with the specified inputPair<Gradient,INDArray>
Layer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layervoid
Model. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
Update the scorevoid
Model. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
Fit the model to the given datavoid
Layer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr)
Set the layer input.void
Updater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
Updater: updates the model -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.api.layers
Methods in org.deeplearning4j.nn.api.layers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description double
IOutputLayer. computeScore(double fullNetworkRegScore, boolean training, LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.INDArray
IOutputLayer. computeScoreForExamples(double fullNetworkRegScore, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.INDArray
RecurrentLayer. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMg)
Similar to rnnTimeStep, this method is used for activations using the state stored in the stateMap as the initialization.INDArray
RecurrentLayer. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing forward pass always from t=0)
If stateMap is empty, default initialization (usually zeros) is used
Implementations also update stateMap at the end of this methodPair<Gradient,INDArray>
RecurrentLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
Truncated BPTT equivalent of Layer.backpropGradient(). -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf
Methods in org.deeplearning4j.nn.conf with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
InputPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
Reverse the preProcess during backprop.INDArray
InputPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
Pre preProcess input/activations for a multi layer network -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.dropout
Methods in org.deeplearning4j.nn.conf.dropout with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
AlphaDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
INDArray
Dropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
INDArray
GaussianDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
INDArray
GaussianNoise. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
INDArray
IDropout. applyDropout(INDArray inputActivations, INDArray resultArray, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
INDArray
SpatialDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.preprocessor
Methods in org.deeplearning4j.nn.conf.preprocessor with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Cnn3DToFeedForwardPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
CnnToFeedForwardPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
CnnToRnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
ComposableInputPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToCnn3DPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToCnnPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToRnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnToCnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnToFeedForwardPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
Cnn3DToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
CnnToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
CnnToRnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
ComposableInputPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToCnn3DPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToCnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
FeedForwardToRnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnToCnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.weightnoise
Methods in org.deeplearning4j.nn.conf.weightnoise with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
DropConnect. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)
INDArray
IWeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying weight noiseINDArray
WeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph
Methods in org.deeplearning4j.nn.graph with parameters of type LayerWorkspaceMgr Modifier and Type Method Description void
ComputationGraph. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
protected void
ComputationGraph. doTruncatedBPTT(INDArray[] inputs, INDArray[] labels, INDArray[] featureMasks, INDArray[] labelMasks, LayerWorkspaceMgr workspaceMgr)
Fit the network using truncated BPTTvoid
ComputationGraph. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
protected void
ComputationGraph. validateArrayWorkspaces(LayerWorkspaceMgr mgr, INDArray array, ArrayType arrayType, String vertexName, boolean isInputVertex, String op)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex
Methods in org.deeplearning4j.nn.graph.vertex with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray[]>
BaseWrapperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
GraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Do backward passINDArray
BaseWrapperVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
GraphVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
Do forward pass using the stored inputsvoid
BaseGraphVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)
void
BaseWrapperVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)
void
GraphVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)
Set the input activations. -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex.impl
Methods in org.deeplearning4j.nn.graph.vertex.impl with parameters of type LayerWorkspaceMgr Modifier and Type Method Description void
LayerVertex. applyPreprocessorAndSetInput(LayerWorkspaceMgr workspaceMgr)
double
LayerVertex. computeScore(double r, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LayerVertex. computeScoreForExamples(double r, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ElementWiseVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
InputVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
L2NormalizeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
L2Vertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
LayerVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
MergeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
PoolHelperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
PreprocessorVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ReshapeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ScaleVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ShiftVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
StackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
SubsetVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
UnstackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
INDArray
ElementWiseVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
InputVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
L2NormalizeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
L2Vertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LayerVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
MergeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
PoolHelperVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
PreprocessorVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ReshapeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ScaleVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ShiftVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
StackVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SubsetVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
UnstackVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
void
LayerVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex.impl.rnn
Methods in org.deeplearning4j.nn.graph.vertex.impl.rnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray[]>
DuplicateToTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
LastTimeStepVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
ReverseTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
INDArray
DuplicateToTimeSeriesVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LastTimeStepVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ReverseTimeSeriesVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers
Methods in org.deeplearning4j.nn.layers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
AbstractLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ActivationLayer. activate(boolean training, LayerWorkspaceMgr mgr)
INDArray
BaseLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
BaseOutputLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
DropoutLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
FrozenLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
FrozenLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
FrozenLayerWithBackprop. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
FrozenLayerWithBackprop. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LossLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
RepeatVector. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
protected void
AbstractLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ActivationLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BaseLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BaseOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BasePretrainNetwork. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
DropoutLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
FrozenLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
FrozenLayerWithBackprop. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
RepeatVector. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
AbstractLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
BaseLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
BaseOutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
FrozenLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
FrozenLayerWithBackprop. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
LossLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
double
BaseOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.double
LossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.INDArray
BaseOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.INDArray
LossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.void
AbstractLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
BaseLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
BaseOutputLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
void
DropoutLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
FrozenLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
void
FrozenLayerWithBackprop. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
void
LossLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
RepeatVector. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
protected abstract INDArray
BaseOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
protected INDArray
OutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
protected INDArray
BaseLayer. getParamWithNoise(String param, boolean training, LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying any weight noise (such as DropConnect) if necessary.protected INDArray
BaseLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
protected INDArray
RepeatVector. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
BaseOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
BaseLayer. preOutputWithPreNorm(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
void
AbstractLayer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution
Methods in org.deeplearning4j.nn.layers.convolution with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Cnn3DLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
CnnLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Convolution1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ConvolutionLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Cropping1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Cropping2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Cropping3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Deconvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Deconvolution3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
DepthwiseConvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SeparableConvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SpaceToBatch. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SpaceToDepth. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ZeroPadding1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ZeroPadding3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ZeroPaddingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Cnn3DLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
CnnLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Convolution1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Convolution3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ConvolutionHelper. backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ConvolutionLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Cropping1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Cropping2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Cropping3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Deconvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Deconvolution3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
DepthwiseConvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SeparableConvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SpaceToBatch. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SpaceToDepth. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ZeroPadding1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ZeroPadding3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
ZeroPaddingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
double
Cnn3DLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
double
CnnLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Cnn3DLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.INDArray
CnnLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.void
ConvolutionLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
Convolution1DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
Convolution3DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
INDArray
Convolution3DLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
ConvolutionHelper. preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
ConvolutionLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used instead of being calculated again.protected Pair<INDArray,INDArray>
Deconvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
Deconvolution3DLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
DepthwiseConvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
SeparableConvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
SpaceToBatch. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
SpaceToDepth. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
Convolution1DLayer. preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected Pair<INDArray,INDArray>
ConvolutionLayer. preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying the public API -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution.subsampling
Methods in org.deeplearning4j.nn.layers.convolution.subsampling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Subsampling1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Subsampling3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SubsamplingHelper. activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
INDArray
SubsamplingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Subsampling1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Subsampling3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SubsamplingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
Subsampling3DLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
SubsamplingLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution.upsampling
Methods in org.deeplearning4j.nn.layers.convolution.upsampling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Upsampling1D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Upsampling2D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Upsampling3D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Upsampling1D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Upsampling2D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
Upsampling3D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
Upsampling2D. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
Upsampling3D. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
protected INDArray
Upsampling1D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
Upsampling2D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
protected INDArray
Upsampling3D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward
Methods in org.deeplearning4j.nn.layers.feedforward with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
PReLU. activate(boolean training, LayerWorkspaceMgr mgr)
Pair<Gradient,INDArray>
PReLU. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.autoencoder
Methods in org.deeplearning4j.nn.layers.feedforward.autoencoder with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
AutoEncoder. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
AutoEncoder. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
void
AutoEncoder. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
INDArray
AutoEncoder. decode(INDArray y, LayerWorkspaceMgr workspaceMgr)
INDArray
AutoEncoder. encode(INDArray v, boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.dense
Methods in org.deeplearning4j.nn.layers.feedforward.dense with parameters of type LayerWorkspaceMgr Modifier and Type Method Description void
DenseLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.elementwise
Methods in org.deeplearning4j.nn.layers.feedforward.elementwise with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray>
ElementWiseMultiplicationLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
INDArray
ElementWiseMultiplicationLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.embedding
Methods in org.deeplearning4j.nn.layers.feedforward.embedding with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
EmbeddingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
EmbeddingSequenceLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
protected void
EmbeddingLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)
protected void
EmbeddingSequenceLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
EmbeddingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
EmbeddingSequenceLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
protected INDArray
EmbeddingLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
protected INDArray
EmbeddingSequenceLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.mkldnn
Methods in org.deeplearning4j.nn.layers.mkldnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
MKLDNNLocalResponseNormalizationHelper. activate(INDArray x, boolean training, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
INDArray
MKLDNNSubsamplingHelper. activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNBatchNormHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNConvHelper. backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNLocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MKLDNNSubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
INDArray
MKLDNNBatchNormHelper. preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean, INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
INDArray
MKLDNNConvHelper. preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.normalization
Methods in org.deeplearning4j.nn.layers.normalization with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
BatchNormalization. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LocalResponseNormalization. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LocalResponseNormalizationHelper. activate(INDArray x, boolean training, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BatchNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BatchNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LocalResponseNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)
void
BatchNormalization. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
LocalResponseNormalization. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
INDArray
BatchNormalization. preOutput(INDArray x, Layer.TrainingMode training, LayerWorkspaceMgr workspaceMgr)
INDArray
BatchNormalizationHelper. preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean, INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.objdetect
Methods in org.deeplearning4j.nn.layers.objdetect with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
Yolo2OutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
static INDArray
YoloUtils. activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, boolean nchw, LayerWorkspaceMgr layerWorkspaceMgr)
static INDArray
YoloUtils. activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, LayerWorkspaceMgr layerWorkspaceMgr)
Pair<Gradient,INDArray>
Yolo2OutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
Yolo2OutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
double
Yolo2OutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
Yolo2OutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.ocnn
Methods in org.deeplearning4j.nn.layers.ocnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
OCNNOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
OCNNOutputLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
OCNNOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
double
OCNNOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.INDArray
OCNNOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.protected INDArray
OCNNOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
protected INDArray
OCNNOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.pooling
Methods in org.deeplearning4j.nn.layers.pooling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
GlobalPoolingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GlobalPoolingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.recurrent
Methods in org.deeplearning4j.nn.layers.recurrent with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
BidirectionalLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
BidirectionalLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesBidirectionalLSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesBidirectionalLSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesLSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Deprecated.INDArray
GravesLSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Deprecated.INDArray
LastTimeStepLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LastTimeStepLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
LSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
FwdPassReturn
LSTMHelper. activate(Layer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray biases, boolean training, INDArray prevOutputActivations, INDArray prevMemCellState, boolean forBackprop, boolean forwards, String inputWeightKey, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)
INDArray
MaskZeroLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
MaskZeroLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SimpleRnn. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
TimeDistributedLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
TimeDistributedLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
static FwdPassReturn
LSTMHelpers. activateHelper(BaseRecurrentLayer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray originalInputWeights, INDArray biases, boolean training, INDArray originalPrevOutputActivations, INDArray originalPrevMemCellState, boolean forBackprop, boolean forwards, String inputWeightKey, INDArray maskArray, boolean hasPeepholeConnections, LSTMHelper helper, CacheMode cacheMode, LayerWorkspaceMgr workspaceMgr, boolean isHelperAllowFallback)
Returns FwdPassReturn object with activations/INDArrays.Pair<Gradient,INDArray>
BidirectionalLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesBidirectionalLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Deprecated.Pair<Gradient,INDArray>
LastTimeStepLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
LSTMHelper. backpropGradient(NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MaskZeroLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
RnnLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
RnnOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SimpleRnn. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
TimeDistributedLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
static Pair<Gradient,INDArray>
LSTMHelpers. backpropGradientHelper(BaseRecurrentLayer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LSTMHelper helper, LayerWorkspaceMgr workspaceMgr, boolean isHelperAllowFallback)
void
BidirectionalLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
double
RnnLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
RnnLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.INDArray
RnnOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.void
BidirectionalLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
protected INDArray
RnnOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
protected INDArray
RnnOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
BidirectionalLayer. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesBidirectionalLSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesLSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)
Deprecated.INDArray
LSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)
INDArray
SimpleRnn. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)
INDArray
BidirectionalLayer. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesBidirectionalLSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
INDArray
GravesLSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
Deprecated.INDArray
LSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
INDArray
SimpleRnn. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)
void
BidirectionalLayer. setInput(INDArray input, LayerWorkspaceMgr layerWorkspaceMgr)
Pair<Gradient,INDArray>
BidirectionalLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesBidirectionalLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
GravesLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Deprecated.Pair<Gradient,INDArray>
LSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SimpleRnn. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.samediff
Methods in org.deeplearning4j.nn.layers.samediff with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
SameDiffLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SameDiffOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SameDiffLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
SameDiffOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
double
SameDiffOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
SameDiffOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray[]>
SameDiffGraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)
INDArray
SameDiffGraphVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.training
Methods in org.deeplearning4j.nn.layers.training with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray>
CenterLossOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
CenterLossOutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
double
CenterLossOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.INDArray
CenterLossOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.protected INDArray
CenterLossOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.util
Methods in org.deeplearning4j.nn.layers.util with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
MaskLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
MaskLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.variational
Methods in org.deeplearning4j.nn.layers.variational with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
VariationalAutoencoder. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
VariationalAutoencoder. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
VariationalAutoencoder. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
VariationalAutoencoder. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
VariationalAutoencoder. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
INDArray
VariationalAutoencoder. generateRandomGivenZ(INDArray latentSpaceValues, LayerWorkspaceMgr workspaceMgr)
Given a specified values for the latent space as input (latent space being z in p(z|data)), randomly generate output x, where x ~ P(x|z)protected INDArray
VariationalAutoencoder. getParamWithNoise(String param, boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
VariationalAutoencoder. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
void
VariationalAutoencoder. setInput(INDArray input, LayerWorkspaceMgr layerWorkspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.wrapper
Methods in org.deeplearning4j.nn.layers.wrapper with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
BaseWrapperLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)
INDArray
BaseWrapperLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Pair<Gradient,INDArray>
BaseWrapperLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
BaseWrapperLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
void
BaseWrapperLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
void
BaseWrapperLayer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.multilayer
Methods in org.deeplearning4j.nn.multilayer with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
MultiLayerNetwork. activate(boolean training, LayerWorkspaceMgr mgr)
INDArray
MultiLayerNetwork. activate(INDArray input, boolean training, LayerWorkspaceMgr mgr)
protected INDArray
MultiLayerNetwork. activationFromPrevLayer(int curr, INDArray input, boolean training, LayerWorkspaceMgr mgr)
Pair<Gradient,INDArray>
MultiLayerNetwork. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
void
MultiLayerNetwork. computeGradientAndScore(LayerWorkspaceMgr layerWorkspaceMgr)
protected void
MultiLayerNetwork. doTruncatedBPTT(INDArray input, INDArray labels, INDArray featuresMaskArray, INDArray labelsMaskArray, LayerWorkspaceMgr workspaceMgr)
void
MultiLayerNetwork. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)
void
MultiLayerNetwork. setInput(INDArray input, LayerWorkspaceMgr mgr)
protected void
MultiLayerNetwork. validateArrayWorkspaces(LayerWorkspaceMgr mgr, INDArray array, ArrayType arrayType, int layerIdx, boolean isPreprocessor, String op)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.updater
Methods in org.deeplearning4j.nn.updater with parameters of type LayerWorkspaceMgr Modifier and Type Method Description void
BaseMultiLayerUpdater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)
void
BaseMultiLayerUpdater. update(Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)
Update the gradient for the model. -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.workspace
Methods in org.deeplearning4j.nn.workspace that return LayerWorkspaceMgr Modifier and Type Method Description LayerWorkspaceMgr
LayerWorkspaceMgr.Builder. build()
static LayerWorkspaceMgr
LayerWorkspaceMgr. noWorkspaces()
static LayerWorkspaceMgr
LayerWorkspaceMgr. noWorkspaces(Map<String,org.bytedeco.javacpp.Pointer> helperWorkspacePointers)
static LayerWorkspaceMgr
LayerWorkspaceMgr. noWorkspacesImmutable()
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize
Methods in org.deeplearning4j.optimize with parameters of type LayerWorkspaceMgr Modifier and Type Method Description void
Solver. optimize(LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize.api
Methods in org.deeplearning4j.optimize.api with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,Double>
ConvexOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)
The gradient and score for this optimizerboolean
ConvexOptimizer. optimize(LayerWorkspaceMgr workspaceMgr)
Calls optimizedouble
LineOptimizer. optimize(INDArray parameters, INDArray gradient, INDArray searchDirection, LayerWorkspaceMgr workspaceMgr)
Line optimizervoid
ConvexOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
Update the gradient according to the configuration such as adagrad, momentum, and sparsity -
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize.solvers
Methods in org.deeplearning4j.optimize.solvers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,Double>
BaseOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)
double
BackTrackLineSearch. optimize(INDArray parameters, INDArray gradients, INDArray searchDirection, LayerWorkspaceMgr workspaceMgr)
boolean
BaseOptimizer. optimize(LayerWorkspaceMgr workspaceMgr)
Optimize call.boolean
StochasticGradientDescent. optimize(LayerWorkspaceMgr workspaceMgr)
double
BackTrackLineSearch. setScoreFor(INDArray parameters, LayerWorkspaceMgr workspaceMgr)
void
BaseOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.preprocessors
Methods in org.deeplearning4j.preprocessors with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArray
KerasFlattenRnnPreprocessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
PermutePreprocessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
ReshapePreprocessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
KerasFlattenRnnPreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
PermutePreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
INDArray
ReshapePreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type LayerWorkspaceMgr Modifier and Type Method Description static INDArray
ConvolutionUtils. adapt2dMask(INDArray mask, INDArray output, @NonNull CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static Pair<INDArray,int[]>
TimeSeriesUtils. pullLastTimeSteps(INDArray pullFrom, INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
Extract out the last time steps (2d array from 3d array input) accounting for the mask layer, if present.static INDArray
TimeSeriesUtils. reshape2dTo3d(INDArray in, long miniBatchSize, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
static INDArray
ConvolutionUtils. reshape2dTo4d(INDArray in2d, long[] toShape, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshape2dTo5d(Convolution3D.DataFormat format, INDArray in2d, long n, long d, long h, long w, long ch, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshape3dMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
TimeSeriesUtils. reshape3dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
static INDArray
ConvolutionUtils. reshape4dMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
static INDArray
ConvolutionUtils. reshape4dTo2d(INDArray in, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshape4dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshape5dTo2d(Convolution3D.DataFormat format, INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshapeCnn3dMask(Convolution3D.DataFormat format, INDArray mask, INDArray label, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshapeMaskIfRequired(INDArray mask, INDArray output, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
ConvolutionUtils. reshapeMaskIfRequired(INDArray mask, INDArray output, LayerWorkspaceMgr workspaceMgr, ArrayType type)
static INDArray
TimeSeriesUtils. reshapePerOutputTimeSeriesMaskTo2d(INDArray perOutputTimeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
static INDArray
TimeSeriesUtils. reshapeTimeSeriesMaskToCnn4dMask(INDArray timeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
Reshape time series mask arrays.static INDArray
TimeSeriesUtils. reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
Reshape time series mask arrays.static INDArray
TimeSeriesUtils. reverseTimeSeries(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
Reverse an input time series along the time dimensionstatic INDArray
TimeSeriesUtils. reverseTimeSeries(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType, RNNFormat dataFormat)
static INDArray
TimeSeriesUtils. reverseTimeSeriesMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
Reverse a (per time step) time series mask, with shape [minibatch, timeSeriesLength]
-