Interface ThresholdAlgorithm
-
- All Superinterfaces:
Serializable
- All Known Implementing Classes:
AdaptiveThresholdAlgorithm,FixedThresholdAlgorithm,TargetSparsityThresholdAlgorithm
public interface ThresholdAlgorithm extends Serializable
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doublecalculateThreshold(int iteration, int epoch, Double lastThreshold, Boolean lastWasDense, Double lastSparsityRatio, INDArray updatesPlusResidual)ThresholdAlgorithmclone()ThresholdAlgorithmReducernewReducer()Create a new ThresholdAlgorithmReducer.
-
-
-
Method Detail
-
calculateThreshold
double calculateThreshold(int iteration, int epoch, Double lastThreshold, Boolean lastWasDense, Double lastSparsityRatio, INDArray updatesPlusResidual)- Parameters:
iteration- Current neural network training iterationepoch- Current neural network training epochlastThreshold- The encoding threshold used in the last iteration - if available. May be null for first iteration in an epoch (where no 'last iteration' value is available)lastWasDense- Whether the last encoding was dense (true) or sparse (false). May be null for the first iteration in an epoch (where no 'last iteration' value is available)lastSparsityRatio- The sparsity ratio of the last iteration. Sparsity ratio is defined as numElements(encoded)/length(updates). A sparsity ratio of 1.0 would mean all entries present in encoded representation; a sparsity ratio of 0.0 would mean the encoded vector did not contain any values. Note: when the last encoding was dense, lastSparsityRatio is always null - this means that the sparsity ratio is larger than 1/16 = 0.0625updatesPlusResidual- The actual array (updates plus residual) that will be encoded using the threshold calculated/returned by this method- Returns:
-
newReducer
ThresholdAlgorithmReducer newReducer()
Create a new ThresholdAlgorithmReducer. Note that implementations should NOT add the curret ThresholdAlgorithm to it.- Returns:
- ThresholdAlgorithmReducer
-
clone
ThresholdAlgorithm clone()
- Returns:
- A clone of the current threshold algorithm
-
-