public static class NeuralNetConfiguration.ListBuilder extends MultiLayerConfiguration.Builder
Modifier and Type | Class and Description |
---|---|
class |
NeuralNetConfiguration.ListBuilder.InputTypeBuilder
Helper class for setting input types
|
backpropType, cacheMode, confs, dampingFactor, dataType, inferenceWorkspaceMode, inputPreProcessors, inputType, overrideNinUponBuild, tbpttBackLength, tbpttFwdLength, trainingWorkspaceMode, validateOutputConfig, validateTbpttConfig
Constructor and Description |
---|
ListBuilder(NeuralNetConfiguration.Builder globalConfig) |
ListBuilder(NeuralNetConfiguration.Builder globalConfig,
Map<Integer,NeuralNetConfiguration.Builder> layerMap) |
Modifier and Type | Method and Description |
---|---|
MultiLayerConfiguration.Builder |
backpropType(@NonNull BackpropType type)
The type of backprop.
|
MultiLayerConfiguration |
build()
Build the multi layer network
based on this neural network and
overr ridden parameters
|
NeuralNetConfiguration.ListBuilder |
cacheMode(@NonNull CacheMode cacheMode)
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
|
NeuralNetConfiguration.ListBuilder |
confs(List<NeuralNetConfiguration> confs) |
NeuralNetConfiguration.ListBuilder |
dataType(@NonNull DataType dataType)
Set the DataType for the network parameters and activations for all layers in the network.
|
protected void |
finalize() |
List<InputType> |
getLayerActivationTypes()
For the (perhaps partially constructed) network configuration, return a list of activation sizes for each
layer in the network.
Note: To use this method, the network input type must have been set using setInputType(InputType) first |
Map<Integer,NeuralNetConfiguration.Builder> |
getLayerwise() |
NeuralNetConfiguration.ListBuilder |
inputPreProcessor(Integer layer,
InputPreProcessor processor)
Specify the processors.
|
NeuralNetConfiguration.ListBuilder |
inputPreProcessors(Map<Integer,InputPreProcessor> processors) |
NeuralNetConfiguration.ListBuilder.InputTypeBuilder |
inputType()
A convenience method for setting input types: note that for example .inputType().convolutional(h,w,d)
is equivalent to .setInputType(InputType.convolutional(h,w,d))
|
NeuralNetConfiguration.ListBuilder |
layer(int ind,
@NonNull Layer layer) |
NeuralNetConfiguration.ListBuilder |
layer(Layer layer) |
NeuralNetConfiguration.ListBuilder |
overrideNinUponBuild(boolean overrideNinUponBuild)
Whether to over ride the nIn
configuration forcibly upon construction.
|
NeuralNetConfiguration.ListBuilder |
setInputType(InputType inputType) |
NeuralNetConfiguration.ListBuilder |
tBPTTBackwardLength(int backwardLength)
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
NeuralNetConfiguration.ListBuilder |
tBPTTForwardLength(int forwardLength)
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller) Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
NeuralNetConfiguration.ListBuilder |
tBPTTLength(int bpttLength)
When doing truncated BPTT: how many steps should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) See: http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
NeuralNetConfiguration.ListBuilder |
validateOutputLayerConfig(boolean validate)
Enabled by default.
|
NeuralNetConfiguration.ListBuilder |
validateTbpttConfig(boolean validate)
Enabled by default.
|
inferenceWorkspaceMode, trainingWorkspaceMode
public ListBuilder(NeuralNetConfiguration.Builder globalConfig, Map<Integer,NeuralNetConfiguration.Builder> layerMap)
public ListBuilder(NeuralNetConfiguration.Builder globalConfig)
public NeuralNetConfiguration.ListBuilder layer(int ind, @NonNull @NonNull Layer layer)
public NeuralNetConfiguration.ListBuilder layer(Layer layer)
public Map<Integer,NeuralNetConfiguration.Builder> getLayerwise()
public NeuralNetConfiguration.ListBuilder overrideNinUponBuild(boolean overrideNinUponBuild)
MultiLayerConfiguration.Builder
overrideNinUponBuild
in class MultiLayerConfiguration.Builder
overrideNinUponBuild
- Whether to over ride the nIn
configuration forcibly upon construction.public NeuralNetConfiguration.ListBuilder inputPreProcessor(Integer layer, InputPreProcessor processor)
MultiLayerConfiguration.Builder
inputPreProcessor
in class MultiLayerConfiguration.Builder
processor
- what to use to preProcess the data.public NeuralNetConfiguration.ListBuilder inputPreProcessors(Map<Integer,InputPreProcessor> processors)
inputPreProcessors
in class MultiLayerConfiguration.Builder
public NeuralNetConfiguration.ListBuilder cacheMode(@NonNull @NonNull CacheMode cacheMode)
MultiLayerConfiguration.Builder
cacheMode
in class MultiLayerConfiguration.Builder
public MultiLayerConfiguration.Builder backpropType(@NonNull @NonNull BackpropType type)
MultiLayerConfiguration.Builder
backpropType
in class MultiLayerConfiguration.Builder
public NeuralNetConfiguration.ListBuilder tBPTTLength(int bpttLength)
MultiLayerConfiguration.Builder
tBPTTLength
in class MultiLayerConfiguration.Builder
bpttLength
- length > 0public NeuralNetConfiguration.ListBuilder tBPTTForwardLength(int forwardLength)
MultiLayerConfiguration.Builder
tBPTTForwardLength
in class MultiLayerConfiguration.Builder
forwardLength
- Forward length > 0, >= backwardLengthpublic NeuralNetConfiguration.ListBuilder tBPTTBackwardLength(int backwardLength)
MultiLayerConfiguration.Builder
tBPTTBackwardLength
in class MultiLayerConfiguration.Builder
backwardLength
- <= forwardLengthpublic NeuralNetConfiguration.ListBuilder confs(List<NeuralNetConfiguration> confs)
confs
in class MultiLayerConfiguration.Builder
public NeuralNetConfiguration.ListBuilder validateOutputLayerConfig(boolean validate)
MultiLayerConfiguration.Builder
validateOutputLayerConfig
in class MultiLayerConfiguration.Builder
validate
- If true: validate output layer configuration. False: don't validatepublic NeuralNetConfiguration.ListBuilder validateTbpttConfig(boolean validate)
MultiLayerConfiguration.Builder
validateTbpttConfig
in class MultiLayerConfiguration.Builder
validate
- Whether TBPTT validation should be performedpublic NeuralNetConfiguration.ListBuilder dataType(@NonNull @NonNull DataType dataType)
MultiLayerConfiguration.Builder
dataType
in class MultiLayerConfiguration.Builder
dataType
- Datatype to use for parameters and activationsprotected void finalize() throws Throwable
public NeuralNetConfiguration.ListBuilder setInputType(InputType inputType)
setInputType
in class MultiLayerConfiguration.Builder
public NeuralNetConfiguration.ListBuilder.InputTypeBuilder inputType()
public List<InputType> getLayerActivationTypes()
setInputType(InputType)
firstpublic MultiLayerConfiguration build()
build
in class MultiLayerConfiguration.Builder
Copyright © 2022. All rights reserved.