Class and Description |
---|
Layer
A neural network layer.
|
Class and Description |
---|
ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo ,
ConvolutionLayer.BwdFilterAlgo , and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
Layer
A neural network layer.
|
Class and Description |
---|
Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
Class and Description |
---|
Layer
A neural network layer.
|
Layer.Builder |
NoParamLayer |
Class and Description |
---|
BaseLayer
A neural network layer.
|
BaseLayer.Builder |
FeedForwardLayer |
FeedForwardLayer.Builder |
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
BaseLayer
A neural network layer.
|
BaseLayer.Builder |
BaseRecurrentLayer |
BaseRecurrentLayer.Builder |
FeedForwardLayer |
FeedForwardLayer.Builder |
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
Layer
A neural network layer.
|
Layer.Builder |
NoParamLayer |
Class and Description |
---|
BaseLayer
A neural network layer.
|
BaseLayer.Builder |
BasePretrainNetwork |
BasePretrainNetwork.Builder |
FeedForwardLayer |
FeedForwardLayer.Builder |
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
BaseLayer
A neural network layer.
|
BaseLayer.Builder |
BaseOutputLayer |
BaseOutputLayer.Builder |
FeedForwardLayer |
FeedForwardLayer.Builder |
Layer
A neural network layer.
|
Layer.Builder |
Class and Description |
---|
Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
Class and Description |
---|
BaseLayer
A neural network layer.
|
BaseOutputLayer |
Layer
A neural network layer.
|
Class and Description |
---|
BaseOutputLayer |
BasePretrainNetwork |
Layer
A neural network layer.
|
Class and Description |
---|
Convolution1DLayer |
ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo ,
ConvolutionLayer.BwdFilterAlgo , and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
ConvolutionLayer.BwdDataAlgo
The backward data algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
ConvolutionLayer.BwdFilterAlgo
The backward filter algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
ConvolutionLayer.FwdAlgo
The forward algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
Class and Description |
---|
PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
Class and Description |
---|
ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo ,
ConvolutionLayer.BwdFilterAlgo , and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
ConvolutionLayer.BwdDataAlgo
The backward data algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
ConvolutionLayer.BwdFilterAlgo
The backward filter algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
ConvolutionLayer.FwdAlgo
The forward algorithm to use when
ConvolutionLayer.AlgoMode is set to "USER_SPECIFIED". |
PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
Class and Description |
---|
Layer
A neural network layer.
|
Class and Description |
---|
AbstractLSTM |
BaseRecurrentLayer |
FeedForwardLayer |
GravesBidirectionalLSTM
Deprecated.
|
Class and Description |
---|
Layer
A neural network layer.
|
Class and Description |
---|
Layer
A neural network layer.
|
Class and Description |
---|
ConvolutionLayer.AlgoMode
The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the
ConvolutionLayer.FwdAlgo ,
ConvolutionLayer.BwdFilterAlgo , and ConvolutionLayer.BwdDataAlgo lists, but they may be very memory intensive, so if weird errors
occur when using cuDNN, please try the "NO_WORKSPACE" mode. |
Layer
A neural network layer.
|
Class and Description |
---|
Convolution3D.DataFormat
An optional dataFormat: "NDHWC" or "NCDHW".
|
Layer
A neural network layer.
|
PoolingType
Pooling type:
MAX: Max pooling - output is the maximum value of the input values AVG: Average pooling - output is the average value of the input values SUM: Sum pooling - output is the sum of the input values PNORM: P-norm pooling |
Copyright © 2022. All rights reserved.