public class MaskZeroLayer extends BaseWrapperLayer
Modifier and Type | Class and Description |
---|---|
static class |
MaskZeroLayer.Builder |
underlying
constraints, iDropout, layerName
Constructor and Description |
---|
MaskZeroLayer(Layer underlying,
double maskingValue) |
MaskZeroLayer(MaskZeroLayer.Builder builder) |
Modifier and Type | Method and Description |
---|---|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
String |
toString() |
getGradientNormalization, getGradientNormalizationThreshold, getRegularizationByParam, initializer, setLayerName
clone, getUpdaterByParam, initializeConstraints, resetLayerDefaultConfig, setDataType
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getLayerName
public MaskZeroLayer(MaskZeroLayer.Builder builder)
public MaskZeroLayer(Layer underlying, double maskingValue)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class BaseWrapperLayer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layer
setNIn
in class BaseWrapperLayer
inputType
- Input type for this layeroverride
- If false: only set the nIn value if it's not already set. If true: set it
regardless of whether it's already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Layer
InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor
getPreProcessorForInputType
in class BaseWrapperLayer
inputType
- InputType to this layerpublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class BaseWrapperLayer
paramName
- Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class BaseWrapperLayer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2022. All rights reserved.