public class ConvolutionLayer extends BaseLayer<ConvolutionLayer>
Layer.TrainingMode, Layer.Type
Modifier and Type | Field and Description |
---|---|
protected ConvolutionMode |
convolutionMode |
protected org.nd4j.linalg.api.ndarray.INDArray |
dummyBias |
protected org.nd4j.linalg.api.ndarray.INDArray |
dummyBiasGrad |
protected ConvolutionHelper |
helper |
protected int |
helperCountFail |
protected org.nd4j.linalg.api.ndarray.INDArray |
i2d |
protected static org.slf4j.Logger |
log |
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, iterationListeners, maskArray, maskState, preOutput
Constructor and Description |
---|
ConvolutionLayer(NeuralNetConfiguration conf) |
ConvolutionLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
double |
calcL1(boolean backpropParamsOnly)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropParamsOnly)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
boolean |
hasBias()
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
preOutput(boolean training,
boolean forBackprop)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
preOutput4d(boolean training,
boolean forBackprop)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
Layer |
transpose()
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
|
Layer.Type |
type()
Returns the layer type
|
accumulateScore, activate, activate, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, initParams, iterate, layerConf, numParams, paramTable, paramTable, preOutput, score, setBackpropGradientsViewArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, activate, activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, batchSize, conf, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, migrateInput, numParams, preOutput, preOutput, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, validateInput
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getEpochCount, getIterationCount, setEpochCount, setIterationCount
protected static final org.slf4j.Logger log
protected org.nd4j.linalg.api.ndarray.INDArray i2d
protected ConvolutionHelper helper
protected int helperCountFail
protected ConvolutionMode convolutionMode
protected transient org.nd4j.linalg.api.ndarray.INDArray dummyBias
protected transient org.nd4j.linalg.api.ndarray.INDArray dummyBiasGrad
public ConvolutionLayer(NeuralNetConfiguration conf)
public ConvolutionLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public double calcL2(boolean backpropParamsOnly)
Layer
calcL2
in interface Layer
calcL2
in class BaseLayer<ConvolutionLayer>
backpropParamsOnly
- If true: calculate L2 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public double calcL1(boolean backpropParamsOnly)
Layer
calcL1
in interface Layer
calcL1
in class BaseLayer<ConvolutionLayer>
backpropParamsOnly
- If true: calculate L1 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public Layer.Type type()
Layer
type
in interface Layer
type
in class AbstractLayer<ConvolutionLayer>
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseLayer<ConvolutionLayer>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> preOutput4d(boolean training, boolean forBackprop)
public org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput
in class BaseLayer<ConvolutionLayer>
protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> preOutput(boolean training, boolean forBackprop)
training
- Train or test time (impacts dropout)forBackprop
- If true: return the im2col2d array for re-use during backprop. False: return null for second
pair entry. Note that it may still be null in the case of CuDNN and the like.public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layer
activate
in interface Layer
activate
in class BaseLayer<ConvolutionLayer>
training
- training or test modepublic Layer transpose()
Layer
transpose
in interface Layer
transpose
in class BaseLayer<ConvolutionLayer>
public boolean hasBias()
BaseLayer
hasBias
in class BaseLayer<ConvolutionLayer>
public boolean isPretrainLayer()
Layer
public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Model
fit
in interface Model
fit
in class BaseLayer<ConvolutionLayer>
input
- the data to fit the model topublic org.nd4j.linalg.api.ndarray.INDArray params()
BaseLayer
params
in interface Model
params
in class BaseLayer<ConvolutionLayer>
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Model
setParams
in interface Model
setParams
in class BaseLayer<ConvolutionLayer>
params
- the parameters for the modelCopyright © 2018. All rights reserved.