public class ElementWiseMultiplicationLayer extends BaseLayer<ElementWiseMultiplicationLayer>
created by jingshu
Layer.TrainingMode, Layer.Type
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, iterationListeners, maskArray, maskState, preOutput
Constructor and Description |
---|
ElementWiseMultiplicationLayer(NeuralNetConfiguration conf) |
ElementWiseMultiplicationLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
accumulateScore, activate, activate, activate, calcL1, calcL2, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, hasBias, initParams, iterate, layerConf, numParams, params, paramTable, paramTable, preOutput, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, transpose, update, update
activate, activate, activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, batchSize, conf, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, migrateInput, numParams, preOutput, preOutput, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, validateInput
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getEpochCount, getIterationCount, setEpochCount, setIterationCount
public ElementWiseMultiplicationLayer(NeuralNetConfiguration conf)
public ElementWiseMultiplicationLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseLayer<ElementWiseMultiplicationLayer>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.public boolean isPretrainLayer()
public org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput
in class BaseLayer<ElementWiseMultiplicationLayer>
Copyright © 2018. All rights reserved.