public class MaskLayer extends AbstractLayer<MaskLayer>
Layer.TrainingMode, Layer.Type
cacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, iterationListeners, maskArray, maskState, preOutput
Constructor and Description |
---|
MaskLayer(NeuralNetConfiguration conf) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
void |
clearNoiseWeightParams() |
Layer |
clone()
Clone the layer
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
accumulateScore, activate, activate, activate, activate, activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, batchSize, calcL1, calcL2, clear, computeGradientAndScore, conf, feedForwardMaskArray, fit, fit, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, layerConf, layerId, migrateInput, numParams, numParams, params, paramTable, paramTable, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, transpose, type, update, update, validateInput
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getEpochCount, getIterationCount, setEpochCount, setIterationCount
public MaskLayer(NeuralNetConfiguration conf)
public Layer clone()
Layer
clone
in interface Layer
clone
in class AbstractLayer<MaskLayer>
public org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput
in class AbstractLayer<MaskLayer>
public boolean isPretrainLayer()
Layer
public void clearNoiseWeightParams()
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Layer
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layer
training
- training or test modeCopyright © 2018. All rights reserved.