Package | Description |
---|---|
org.deeplearning4j.earlystopping.scorecalc | |
org.deeplearning4j.eval | |
org.deeplearning4j.nn.graph | |
org.deeplearning4j.nn.multilayer |
Modifier and Type | Method and Description |
---|---|
protected Evaluation |
ClassificationScoreCalculator.newEval() |
Modifier and Type | Method and Description |
---|---|
protected double |
ClassificationScoreCalculator.finalScore(Evaluation e) |
Modifier and Type | Method and Description |
---|---|
static Evaluation |
Evaluation.fromJson(String json) |
static Evaluation |
Evaluation.fromYaml(String yaml) |
Modifier and Type | Method and Description |
---|---|
void |
Evaluation.merge(Evaluation other)
Merge the other evaluation object into this one.
|
Modifier and Type | Method and Description |
---|---|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator)
Evaluate the network (classification performance - single output ComputationGraphs only)
|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
List<String> labelsList)
Evaluate the network on the provided data set (single output ComputationGraphs only).
|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
List<String> labelsList,
int topN)
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator)
Evaluate the network (classification performance - single output ComputationGraphs only)
|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
List<String> labelsList)
Evaluate the network on the provided data set (single output ComputationGraphs only).
|
Evaluation |
ComputationGraph.evaluate(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
List<String> labelsList,
int topN)
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
|
Modifier and Type | Method and Description |
---|---|
Evaluation |
MultiLayerNetwork.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator)
Evaluate the network (classification performance)
|
Evaluation |
MultiLayerNetwork.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
List<String> labelsList)
Evaluate the network on the provided data set.
|
Evaluation |
MultiLayerNetwork.evaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
List<String> labelsList,
int topN)
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
|
Copyright © 2018. All rights reserved.