Package | Description |
---|---|
org.deeplearning4j.nn.conf | |
org.deeplearning4j.nn.conf.layers.samediff | |
org.deeplearning4j.nn.transferlearning |
Modifier and Type | Field and Description |
---|---|
protected NeuralNetConfiguration.Builder |
ComputationGraphConfiguration.GraphBuilder.globalConfiguration |
Modifier and Type | Method and Description |
---|---|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.activation(org.nd4j.linalg.activations.Activation activation)
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.activation(org.nd4j.linalg.activations.IActivation activationFunction)
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.biasInit(double biasInit)
Constant for bias initialization.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.biasUpdater(org.nd4j.linalg.learning.config.IUpdater updater)
Gradient updater configuration, for the biases only.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.cacheMode(CacheMode cacheMode)
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.clone() |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainAllParameters(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainBias(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.constrainWeights(LayerConstraint... constraints)
Set constraints to be applied to all layers.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.convolutionMode(ConvolutionMode convolutionMode)
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dist(Distribution dist)
Distribution to sample initial weights from.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dropOut(double inputRetainProbability)
Dropout probability.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.dropOut(IDropout dropout)
Set the dropout for all layers in this network
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.gradientNormalization(GradientNormalization gradientNormalization)
Gradient normalization strategy.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.gradientNormalizationThreshold(double threshold)
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise. L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping. Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.inferenceWorkspaceMode(WorkspaceMode workspaceMode)
This method defines Workspace mode being used during inference:
NONE: workspace won't be used ENABLED: workspaces will be used for inference (reduced memory and better performance) |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l1(double l1)
L1 regularization coefficient for the weights.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l1Bias(double l1Bias)
L1 regularization coefficient for the bias.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l2(double l2)
L2 regularization coefficient for the weights.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.l2Bias(double l2Bias)
L2 regularization coefficient for the bias.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.layer(Layer layer)
Layer class.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.maxNumLineSearchIterations(int maxNumLineSearchIterations)
Maximum number of line search iterations.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.miniBatch(boolean miniBatch)
Process input as minibatch vs full dataset.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.minimize(boolean minimize)
Objective function to minimize or maximize cost function
Default set to minimize true.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.optimizationAlgo(OptimizationAlgorithm optimizationAlgo)
Optimization algorithm to use.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.seed(long seed)
Random number generator seed.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.stepFunction(StepFunction stepFunction)
Deprecated.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.trainingWorkspaceMode(WorkspaceMode workspaceMode)
This method defines Workspace mode being used during training:
NONE: workspace won't be used ENABLED: workspaces will be used for training (reduced memory and better performance) |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.updater(org.nd4j.linalg.learning.config.IUpdater updater)
Gradient updater configuration.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.updater(Updater updater)
Deprecated.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution.
|
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightInit(WeightInit weightInit)
Weight initialization scheme.
Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
NeuralNetConfiguration.Builder |
NeuralNetConfiguration.Builder.weightNoise(IWeightNoise weightNoise)
Set the weight noise (such as
DropConnect and
WeightNoise ) for the layers in this network.Note: values set by this method will be applied to all applicable layers in the network, unless a different value is explicitly set on a given layer. |
Modifier and Type | Method and Description |
---|---|
Map<Integer,NeuralNetConfiguration.Builder> |
NeuralNetConfiguration.ListBuilder.getLayerwise() |
Constructor and Description |
---|
GraphBuilder(ComputationGraphConfiguration newConf,
NeuralNetConfiguration.Builder globalConfiguration) |
GraphBuilder(NeuralNetConfiguration.Builder globalConfiguration) |
ListBuilder(NeuralNetConfiguration.Builder globalConfig) |
ListBuilder(NeuralNetConfiguration.Builder globalConfig,
Map<Integer,NeuralNetConfiguration.Builder> layerMap) |
Constructor and Description |
---|
ListBuilder(NeuralNetConfiguration.Builder globalConfig,
Map<Integer,NeuralNetConfiguration.Builder> layerMap) |
Modifier and Type | Method and Description |
---|---|
void |
AbstractSameDiffLayer.applyGlobalConfig(NeuralNetConfiguration.Builder b) |
abstract void |
AbstractSameDiffLayer.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)
Apply the global configuration (weight init, activation function, etc) to this layer
|
void |
BaseSameDiffLayer.applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig) |
Modifier and Type | Method and Description |
---|---|
NeuralNetConfiguration.Builder |
FineTuneConfiguration.appliedNeuralNetConfigurationBuilder() |
Copyright © 2018. All rights reserved.