Package | Description |
---|---|
org.deeplearning4j.nn.conf.layers.variational | |
org.deeplearning4j.nn.conf.serde.legacyformat | |
org.deeplearning4j.nn.layers.variational |
Modifier and Type | Class and Description |
---|---|
class |
BernoulliReconstructionDistribution
Bernoulli reconstruction distribution for variational autoencoder.
Outputs are modelled by a Bernoulli distribution - i.e., the Bernoulli distribution should be used for binary data (all values 0 or 1); the VAE models the probability of the output being 0 or 1. Consequently, the sigmoid activation function should be used to bound activations to the range of 0 to 1. |
class |
CompositeReconstructionDistribution
CompositeReconstructionDistribution is a reconstruction distribution built from multiple other ReconstructionDistribution
instances.
The typical use is to combine for example continuous and binary data in the same model, or to combine different distributions for continuous variables. |
class |
ExponentialReconstructionDistribution
Exponential reconstruction distribution.
Supports data in range [0,infinity) |
class |
GaussianReconstructionDistribution
Gaussian reconstruction distribution for variational autoencoder.
Outputs are modelled by a Gaussian distribution, with the mean and variances (diagonal covariance matrix) for each output determined by the network forward pass. |
class |
LossFunctionWrapper
LossFunctionWrapper allows training of a VAE model with a standard (possibly deterministic) neural network loss function
for the reconstruction, instead of using a
ReconstructionDistribution as would normally be done with a VAE model. |
Modifier and Type | Method and Description |
---|---|
CompositeReconstructionDistribution.Builder |
CompositeReconstructionDistribution.Builder.addDistribution(int distributionSize,
ReconstructionDistribution distribution)
Add another distribution to the composite distribution.
|
VariationalAutoencoder.Builder |
VariationalAutoencoder.Builder.reconstructionDistribution(ReconstructionDistribution distribution)
The reconstruction distribution for the data given the hidden state - i.e., P(data|Z).
This should be selected carefully based on the type of data being modelled. |
Constructor and Description |
---|
CompositeReconstructionDistribution(int[] distributionSizes,
ReconstructionDistribution[] reconstructionDistributions,
int totalSize) |
Modifier and Type | Method and Description |
---|---|
static void |
LegacyReconstructionDistributionDeserializer.registerLegacyClassDefaultName(Class<? extends ReconstructionDistribution> clazz) |
static void |
LegacyReconstructionDistributionDeserializer.registerLegacyClassSpecifiedName(String name,
Class<? extends ReconstructionDistribution> clazz) |
Modifier and Type | Field and Description |
---|---|
protected ReconstructionDistribution |
VariationalAutoencoder.reconstructionDistribution |
Copyright © 2018. All rights reserved.