public abstract class BasePretrainNetwork extends FeedForwardLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
BasePretrainNetwork.Builder<T extends BasePretrainNetwork.Builder<T>> |
| Modifier and Type | Field and Description |
|---|---|
protected LossFunctions.LossFunction |
lossFunction |
protected boolean |
pretrain |
protected double |
visibleBiasInit |
nIn, nOutactivationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoiseconstraints, iDropout, layerName| Constructor and Description |
|---|
BasePretrainNetwork(BasePretrainNetwork.Builder builder) |
| Modifier and Type | Method and Description |
|---|---|
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
boolean |
isPretrain() |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setPretrain(boolean pretrain) |
getOutputType, getPreProcessorForInputType, setNInclone, getGradientNormalization, getUpdaterByParam, resetLayerDefaultConfiggetMemoryReport, initializeConstraints, initializer, instantiateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNameprotected LossFunctions.LossFunction lossFunction
protected double visibleBiasInit
protected boolean pretrain
public BasePretrainNetwork(BasePretrainNetwork.Builder builder)
public double getL1ByParam(String paramName)
LayergetL1ByParam in interface TrainingConfiggetL1ByParam in class FeedForwardLayerparamName - Parameter namepublic double getL2ByParam(String paramName)
LayergetL2ByParam in interface TrainingConfiggetL2ByParam in class FeedForwardLayerparamName - Parameter namepublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class FeedForwardLayerparamName - Parameter name/keypublic boolean isPretrain()
isPretrain in interface TrainingConfigisPretrain in class FeedForwardLayerpublic void setPretrain(boolean pretrain)
setPretrain in interface TrainingConfigsetPretrain in class Layerpretrain - Whether the layer is currently undergoing layerwise unsupervised training, or multi-layer backpropCopyright © 2018. All rights reserved.