public class RepeatVector extends FeedForwardLayer
Modifier and Type | Class and Description |
---|---|
static class |
RepeatVector.Builder<T extends RepeatVector.Builder<T>> |
nIn, nOut
activationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
RepeatVector(RepeatVector.Builder builder) |
Modifier and Type | Method and Description |
---|---|
RepeatVector |
clone() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
getPreProcessorForInputType, isPretrain, setNIn
getGradientNormalization, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints, setPretrain
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected RepeatVector(RepeatVector.Builder builder)
public RepeatVector clone()
public ParamInitializer initializer()
initializer
in class Layer
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams)
instantiate
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class FeedForwardLayer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input typepublic double getL1ByParam(String paramName)
Layer
getL1ByParam
in interface TrainingConfig
getL1ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in interface TrainingConfig
getL2ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class FeedForwardLayer
paramName
- Parameter name/keyCopyright © 2018. All rights reserved.