public class DummyConfig extends Object implements TrainingConfig
Constructor and Description |
---|
DummyConfig() |
Modifier and Type | Method and Description |
---|---|
GradientNormalization |
getGradientNormalization() |
double |
getGradientNormalizationThreshold() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
String |
getLayerName() |
IUpdater |
getUpdaterByParam(String paramName)
Get the updater for the given parameter.
|
boolean |
isPretrain() |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setPretrain(boolean pretrain) |
public String getLayerName()
getLayerName
in interface TrainingConfig
public boolean isPretrain()
isPretrain
in interface TrainingConfig
public double getL1ByParam(String paramName)
TrainingConfig
getL1ByParam
in interface TrainingConfig
paramName
- Parameter namepublic double getL2ByParam(String paramName)
TrainingConfig
getL2ByParam
in interface TrainingConfig
paramName
- Parameter namepublic boolean isPretrainParam(String paramName)
TrainingConfig
isPretrainParam
in interface TrainingConfig
paramName
- Parameter name/keypublic IUpdater getUpdaterByParam(String paramName)
TrainingConfig
getUpdaterByParam
in interface TrainingConfig
paramName
- Parameter namepublic GradientNormalization getGradientNormalization()
getGradientNormalization
in interface TrainingConfig
public double getGradientNormalizationThreshold()
getGradientNormalizationThreshold
in interface TrainingConfig
public void setPretrain(boolean pretrain)
setPretrain
in interface TrainingConfig
pretrain
- Whether the layer is currently undergoing layerwise unsupervised training, or multi-layer backpropCopyright © 2018. All rights reserved.