public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Type
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
DenseLayer(NeuralNetConfiguration conf) |
DenseLayer(NeuralNetConfiguration conf,
INDArray input) |
Modifier and Type | Method and Description |
---|---|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
boolean |
hasBias()
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
activate, backpropGradient, calcL1, calcL2, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, layerConf, numParams, params, paramTable, paramTable, preOutput, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getIterationCount, setIterationCount
public DenseLayer(NeuralNetConfiguration conf)
public DenseLayer(NeuralNetConfiguration conf, INDArray input)
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Model
fit
in interface Model
fit
in class BaseLayer<DenseLayer>
input
- the data to fit the model topublic boolean isPretrainLayer()
Layer
public boolean hasBias()
BaseLayer
hasBias
in class BaseLayer<DenseLayer>
Copyright © 2018. All rights reserved.